The Examination of Repeated Self-Mobilizations With Movement and Joint Mobilizations on Individuals With Chronic Ankle Instability

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Chronic ankle instability (CAI) is one of the most common chronic conditions in the world, resulting in millions of dollars contributed to the health care system. Joint mobilizations have been shown to effectively improve patient and disease-specific impairments secondary to CAI. The ability for patients to complete an effective manual therapy intervention without the need for continuous visits to a health care provider can alleviate burdens on the health care system and improve patient satisfaction. Objective: To examine the effect of clinician-applied Maitland talocrural joint mobilization and self-mobilization (Self-Mob) on dorsiflexion range of motion (DFROM), dynamic balance, strength, and perceived function in those with CAI. Design: Single-blind randomized trial. Setting: Research laboratory. Participants: A total of 18 participants (7 males and 11 females; age = 20.78 [2.02] y, height = 67.66 [3.83] cm, limb length = 87.74 [5.05] cm) with self-reported CAI participated. Interventions: The participants received 6 interventions over a 2-week period. The participants received either Maitland grade III anterior-to-posterior talocrural joint mobilizations or weight-bearing lunge Self-Mob. Each intervention consisted of four 2-minute sets, with a 1-minute rest between sets. Main Outcome Measures: The DFROM (weight-bearing lunge), dynamic balance (Y-Balance Test), isometric strength, Foot and Ankle Ability Measure Quick, Disablement of the Physically Active modified, Fear Avoidance Beliefs Questionnaire, and Tampa Scale of Kinesiophobia-11 were measured preintervention and postintervention. Results: Dynamic balance, isometric strength, and perceived function significantly improved in both groups at postintervention. The DFROM significantly improved in the Self-Mob group. Higher individual responder rates were demonstrated within the Self-Mob group compared with clinician-applied mobilizations. Conclusions: Clinician-applied mobilizations and Self-Mobs are effective interventions for improving dynamic balance, isometric strength, and perceived function. Application of Self-Mobs can effectively improve DFROM compared with joint mobilization. Self-Mobs may be an effective intervention to incorporate into a home care plan.

Burton, Arthur, and Rivera are with the Neuromechanics, Interventions, and Continuing Education Research (NICER) Laboratory, Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN, USA. Powden is with the Master of Science in Athletic Training program, College of Health Sciences, University of Indianapolis, Indianapolis, IN, USA.

Burton (connor.burton@indstate.edu) is corresponding author.
  • 1.

    Kannus P, Renstrom P. Treatment for acute tears of the lateral ligaments of the ankle. Operation, cast, or early controlled mobilization. J Bone Joint Surg Am. 1991;73(2):305312. PubMed ID: 1993726

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fong DT, Hong Y, Chan LK, Yung PS, Chan KM. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007;37(1):7394. PubMed ID: 17190537 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Anandacoomarasamy A, Barnsley L. Long term outcomes of inversion ankle injuries. Br J Sports Med. 2005;39(3):e14; discussion e14. PubMed ID: 15728682 doi:

  • 4.

    Konradsen L, Bech L, Ehrenbjerg M, Nickelsen T. Seven years follow-up after ankle inversion trauma. Scand J Med Sci Sports. 2002;12(3):129135. PubMed ID: 12135444 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Delahunt E, Coughlan GF, Caulfield B, Nightingale EJ, Lin CW, Hiller CE. Inclusion criteria when investigating insufficiencies in chronic ankle instability. Med Sci Sports Exerc. 2010;42(11):21062121. PubMed ID: 20351590 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gerber JP, Williams GN, Scoville CR, Arciero RA, Taylor DC. Persistent disability associated with ankle sprains: a prospective examination of an athletic population. Foot Ankle Int. 1998;19(10):653660. PubMed ID: 9801078 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Soboroff SH, Pappius EM, Komaroff AL. Benefits, risks, and costs of alternative approaches to the evaluation and treatment of severe ankle sprain. Clin Orthop Relat Res. 1984(183):160168. PubMed ID: 6421526

    • Search Google Scholar
    • Export Citation
  • 8.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Recovery from a first-time lateral ankle sprain and the predictors of chronic ankle instability: a prospective cohort analysis. Am J Sports Med. 2016;44(4):9951003. PubMed ID: 26912285 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Verhagen R, De Keizer G, Van Dijk C. Long-term follow-up of inversion trauma of the ankle. Arch Orthop Trauma Surg. 1995;114(2):9296. PubMed ID: 7734241 doi:

  • 10.

    Kruk J. Physical activity in the prevention of the most frequent chronic diseases: an analysis of the recent evidence. Asian Pacific J Cancer Prev. 2007;8(3):325338. PubMed ID: 18159963

    • Search Google Scholar
    • Export Citation
  • 11.

    Hoch MC, Farwell KE, Gaven SL, Weinhandl JT. Weight-bearing dorsiflexion range of motion and landing biomechanics in individuals with chronic ankle instability. J Athl Train. 2015;50(8):833839. PubMed ID: 26067428 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hoch MC, McKeon PO. Joint mobilization improves spatiotemporal postural control and range of motion in those with chronic ankle instability. J Orthop Res. 2011;29(3):326332. PubMed ID: 20886654 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wikstrom EA, Hubbard TJ. Talar positional fault in persons with chronic ankle instability. Arch Phys Med Rehabil. 2010;91(8):12671271. PubMed ID: 20684909 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gribble PA, Hertel J, Plisky P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train. 2012;47(3):339357. PubMed ID: 22892416 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Munn J, Sullivan SJ, Schneiders AG. Evidence of sensorimotor deficits in functional ankle instability: a systematic review with meta-analysis. J Sci Med Sport. 2010;13(1):212. PubMed ID: 19442581 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McKeon PO, Wikstrom EA. Sensory-targeted ankle rehabilitation strategies for chronic ankle instability. Med Sci Sports Exerc. 2016;48(5):776. PubMed ID: 26717498 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364. PubMed ID: 12937557

  • 18.

    Bonnin M, Tavernier T, Bouysset M. Split lesions of the peroneus brevis tendon in chronic ankle laxity. Am J Sports Med. 1997;25(5):699703. PubMed ID: 9302480 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kim KM, Ingersoll CD, Hertel J. Altered postural modulation of Hoffmann reflex in the soleus and fibularis longus associated with chronic ankle instability. J Electromyogr Kinesiol. 2012;22(6):9971002. PubMed ID: 22795679 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Houston MN, Hoch JM, Hoch MC. Patient-reported outcome measures in individuals with chronic ankle instability: a systematic review. J Athl Train. 2015;50(10):10191033. PubMed ID: 26332028 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hubbard-Turner T, Turner MJ. Physical activity levels in college students with chronic ankle instability. J Athl Train. 2015;50(7):742747. PubMed ID: 25898110 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cruz-Díaz D, Lomas Vega R, Osuna-Pérez MC, Hita-Contreras F, Martínez-Amat A. Effects of joint mobilization on chronic ankle instability: a randomized controlled trial. Disabil Rehabil. 2015;37(7):601610. PubMed ID: 24989067 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Vicenzino B, Branjerdporn M, Teys P, Jordan K. Initial changes in posterior talar glide and dorsiflexion of the ankle after mobilization with movement in individuals with recurrent ankle sprain. J Orthop Sports Phys Ther. 2006;36(7):464471. PubMed ID: 16881463 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hoch MC, Andreatta RD, Mullineaux DR, et al. Two-week joint mobilization intervention improves self-reported function, range of motion, and dynamic balance in those with chronic ankle instability. J Orthop Res. 2012;30(11):17981804. PubMed ID: 22610971 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Loudon JK, Reiman MP, Sylvain J. The efficacy of manual joint mobilisation/manipulation in treatment of lateral ankle sprains: a systematic review. Br J Sports Med. 2014;48(5):365370. PubMed ID: 23980032 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Marrón-Gómez D, Rodríguez-Fernández ÁL, Martín-Urrialde JA. The effect of two mobilization techniques on dorsiflexion in people with chronic ankle instability. Phys Ther Sport. 2015;16(1):1015. PubMed ID: 24679362 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gilbreath JP, Gaven SL, Van Lunen BL, Hoch MC. The effects of mobilization with movement on dorsiflexion range of motion, dynamic balance, and self-reported function in individuals with chronic ankle instability. Man Ther. 2014;19(2):152157. PubMed ID: 24834500 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Harkey M, McLeod M, Van Scoit A, et al. The immediate effects of an anterior-to-posterior talar mobilization on neural excitability, dorsiflexion range of motion, and dynamic balance in patients with chronic ankle instability. J Sport Rehabil. 2014;23(4):351359. PubMed ID: 24700526 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Walsh R, Kinsella S. The effects of caudal mobilisation with movement (MWM) and caudal self-mobilisation with movement (SMWM) in relation to restricted internal rotation in the hip: a randomised control pilot study. Man Ther. 2016;22:915. PubMed ID: 26995777 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Gribble PA, Delahunt E, Bleakley CM, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Athl Train. 2014;49(1):121127. PubMed ID: 24377963 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Green T, Refshauge K, Crosbie J, Adams R. A randomized controlled trial of a passive accessory joint mobilization on acute ankle inversion sprains. Phys Ther. 2001;81(4):984994. PubMed ID: 11276181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hing W, Hall T, Rivett DA, Vicenzino B, Mulligan B. The Mulligan Concept of Manual Therapy: Textbook of Techniques. Chatswood, Australia: Elsevier Australia; 2015.

    • Search Google Scholar
    • Export Citation
  • 33.

    Bennell K, Talbot R, Wajswelner H, Techovanich W, Kelly D, Hall A. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 1998;44(3):175180. PubMed ID: 11676731 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther. 2006;36(12):911919. PubMed ID: 17193868 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Shaffer SW, Teyhen DS, Lorenson CL, et al. Y-balance test: a reliability study involving multiple raters. Mil Med. 2013;178(11):12641270. PubMed ID: 24183777 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Kelln BM, McKeon PO, Gontkof LM, Hertel J. Hand-held dynamometry: reliability of lower extremity muscle testing in healthy, physically active,young adults. J Sport Rehabil. 2008;17(2):160170. PubMed ID: 18515915 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Spink MJ, Fotoohabadi MR, Menz HB. Foot and ankle strength assessment using hand-held dynamometry: reliability and age-related differences. Gerontology. 2010;56(6):525532. PubMed ID: 19955706 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hoch JM, Powden CJ, Hoch MC. Reliability, minimal detectable change, and responsiveness of the Quick-FAAM. Phys Ther Sport. 2018; 32:269272. PubMed ID: 29804692 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Vela LI, Denegar CR. The disablement in the physically active scale, part II: the psychometric properties of an outcomes scale for musculoskeletal injuries. J Athl Train. 2010;45(6):630641. PubMed ID: 21062187 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Woby SR, Roach NK, Urmston M, Watson PJ. Psychometric properties of the TSK-11: a shortened version of the Tampa Scale for kinesiophobia. Pain. 2005;117(1–2):137144. PubMed ID: 16055269 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Waddell G, Newton M, Henderson I, Somerville D, Main CJ. A fear-avoidance beliefs questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 1993;52(2):157168. PubMed ID: 8455963 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Powden CJ, Hoch JM, Jamali BE, Hoch MC. A 4-week multimodal intervention for individuals with chronic ankle instability: examination of disease-oriented and patient-oriented outcomes. J Athl Train. 2019;54(4):384396. PubMed ID: 30589387 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hapidou EG, O’Brien MA, Pierrynowski MR, de Las Heras E, Patel M, Patla T. Fear and avoidance of movement in people with chronic pain: psychometric properties of the 11-item tampa scale for kinesiophobia (TSK-11). Physiother Canada. 2012;64(3):235241. PubMed ID: 23729957 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol General. 2012;141(1):218. PubMed ID: 21823805 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Vallandingham RA, Gaven SL, Powden CJ. Changes in dorsiflexion and dynamic postural control after mobilizations in individuals with chronic ankle instability: a systematic review and meta-analysis. J Athl Train. 2019;54(4):403417. PubMed ID: 30870009 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Denegar CR, Hertel J, Fonseca J. The effect of lateral ankle sprain on dorsiflexion range of motion, posterior talar glide, and joint laxity. J Orthop Sports Phys Ther. 2002;32(4):166173. PubMed ID: 11949665 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Vicenzino B, Prangley I, Martin D. The initial effect of two Mulligan mobilisation with movement treatment techniques on ankle dorsiflexion. Paper presented at: a sports medicine odyssey—challenges, controversies and change: proceedings of the Australian Conference of Science and Medicine in Sport; 2001.

    • Export Citation
  • 48.

    McKeon PO, Ingersoll CD, Kerrigan DC, Saliba E, Bennett BC, Hertel J. Balance training improves function and postural control in those with chronic ankle instability. Med Sci Sports Exerc. 2008;40(10):18101819. PubMed ID: 18799992 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Kang M-H, Lee D-K, Park K-H, Oh J-S. Association of ankle kinematics and performance on the y-balance test with inclinometer measurements on the weight-bearing-lunge test. J Sport Rehabil. 2015;24(1):6267. PubMed ID: 24458334 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Hall EA, Chomistek AK, Kingma JJ, Docherty CL. Balance- and strength-training protocols to improve chronic ankle instability deficits, part I: assessing clinical outcome measures. J Athl Train. 2018;53(6):568577. PubMed ID: 29975573 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Hall EA, Docherty CL, Simon J, Kingma JJ, Klossner JC. Strength-training protocols to improve deficits in participants with chronic ankle instability: a randomized controlled trial. J Athl Train. 2015;50(1):3644. PubMed ID: 25365134 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Donovan L, Hart JM, Saliba SA, et al. Rehabilitation for chronic ankle instability with or without destabilization devices: a randomized controlled trial. J Athl Train. 2016;51(3):233251. PubMed ID: 26934211 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Hoch JM, Legner JL, Lorete C, Hoch MC. The validity of the Quick-FAAM in patients seeking treatment for an acute or sub acute foot or ankle health condition. J Sport Rehabil. 2016;26(3):jsr.2016-0089. PubMed ID: 27633016 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Martin RL, Irrgang JJ, Burdett RG, Conti SF, Van Swearingen JM. Evidence of validity for the foot and ankle ability measure (FAAM). Foot Ankle Int. 2005;26(11):968983. PubMed ID: 16309613 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Burcal CJ, Trier AY, Wikstrom EA. Balance training versus balance training with stars in patients with chronic ankle instability: a randomized controlled trial. J Sport Rehabil. 2017;26(5):347357. PubMed ID: 27632839 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Wikstrom EA, McKeon PO. Predicting range of motion improvements following STARS treatments in chronic ankle instability patients. Int J Athl Ther Train. 2018;23(2):7782.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 362 362 159
Full Text Views 21 21 12
PDF Downloads 12 12 5