Effect of Nordic Hamstring Exercise Training on Knee Flexors Eccentric Strength and Fascicle Length: A Systematic Review and Meta-Analysis

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Nordic hamstring exercise (NHE) has been widely employed to prevent hamstring strain injuries. However, it is still not clear which adaptations are responsible for the NHE preventive effects. Objectives: The aim of this study was to investigate the effects of NHE on knee flexors eccentric strength and fascicle length. Evidence Acquisition: The search strategy included MEDLINE, PEDro, and Cochrane CENTRAL from inception to April 2020. Randomized clinical trials that have analyzed the effects of NHE training on hamstring eccentric strength and/or fascicle length were included. Evidence Synthesis: From the 1932 studies identified, 12 were included in the systematic review, and 9 studies presented suitable data for the meta-analysis. All studies demonstrated strength increments in response to NHE training (10%–15% and 16%–26% in tests performed on the isokinetic dynamometer and on the NHE device, respectively), as well as significant enhancement of biceps femoris long head fascicle length (12%–22%). Meta-analysis showed NHE training was effective to increase knee flexors eccentric strength assessed with both isokinetic tests (0.68; 95% confidence interval, 0.29 to 1.06) and NHE tests (1.11; 95% confidence interval, 0.62 to 1.61). NHE training was also effective to increase fascicle length (0.97; 95% confidence interval, 0.46 to 1.48). Conclusions: NHE training has the potential of increasing both knee flexors eccentric strength and biceps femoris long head fascicle length.

The authors are with the Graduate Program of Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.

Medeiros (Diulian.medeiros@yahoo.com) is corresponding author.
  • 1.

    Brukner P. Hamstring injuries: prevention and treatment—an update. Br J Sports Med. 2015;49(19):12411244. doi:

  • 2.

    Malliaropoulos N, Isinkaye T, Tsitas K, Maffulli N. Reinjury after acute posterior thigh muscle injuries in elite track and field athletes. Am J Sports Med. 2011;39(2):304310. PubMed ID: 21051422 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Brooks JHM, Fuller CW, Kemp SPT, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sport Med. 2006;34(8):12971306. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Borowski LA, Yard EE, Fields SK, Comstock RD. The Epidemiology of US High School Basketball Injuries, 2005–2007. Am J Sports Med. 2008;36(12):23282335. PubMed ID: 18765675 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):12261232. PubMed ID: 21335353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Feeley BT, Kennelly S, Barnes RP, et al. Epidemiology of National Football League Training Camp Injuries from 1998 to 2007. Am J Sports Med. 2008;36(8):15971603. PubMed ID: 18443276 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Askling CM, Tengvar M, Saartok T, Thorstensson A. Proximal hamstring strains of stretching type in different sports: injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am J Sports Med. 2008;36(9):17991804. PubMed ID: 18448581 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Garrett WE. Muscle strain injuries. Am J Sports Med. 1996;24(6):S2S8. doi:

  • 9.

    Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84(5):822832. doi:

  • 10.

    Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745764. PubMed ID: 15851777 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Shankar PR, Fields SK, Collins CL, Dick RW, Comstock RD. Epidemiology of High School and Collegiate Football Injuries in the United States, 2005-2006. Am J Sports Med. 2007;35(8):12951303. PubMed ID: 17369559 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Price RJ, Hawkins RD, Hulse MA, Hodson A. The Football Association medical research programme: an audit of injuries in academy youth football. Br J Sports Med. 2004;38(4):466471. PubMed ID: 15273188 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Marshall SW, Hamstra-Wright KL, Dick R, Grove KA, Agel J. Descriptive epidemiology of collegiate women’s softball injuries: National Collegiate Athletic Association injury surveillance system, 1988–1989 through 2003–2004. J Athl Train. 2007;42(2):286294. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553558. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ekstrand J, Waldén M, Hägglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731737. PubMed ID: 26746908 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hallén A, Ekstrand J. Return to play following muscle injuries in professional footballers. J Sports Sci. 2014;32(13):12291236. PubMed ID: 24784885 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tol JL, Hamilton B, Eirale C, Muxart P, Jacobsen P, Whiteley R. At return to play following hamstring injury the majority of professional football players have residual isokinetic deficits. Br J Sports Med. 2014;48(18):13641369. PubMed ID: 24493666 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Woods C. The football association medical research programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J Sports Med. 2004;38(1):3641. PubMed ID: 14751943 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hägglund M, Waldén M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):738742. PubMed ID: 23645832 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):22962303. PubMed ID: 21825112 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Schache A. Eccentric hamstring muscle training can prevent hamstring injuries in soccer players. J Physiother. 2012;58(1):58. PubMed ID: 22341384 doi:

  • 22.

    van der Horst N, Smits D-W, Petersen J, Goedhart EA, Backx FJG. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players. Am J Sports Med. 2015;43(6):13161323. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Nichols AW. Does eccentric training of hamstring muscles reduce acute injuries in soccer? Clin J Sport Med. 2013;23(1):8586. PubMed ID: 23269328 doi:

  • 24.

    Arnason A, Andersen TE, Holme I, Engebretsen L, Bahr R. Prevention of hamstring strains in elite soccer: an intervention study. Scand J Med Sci Sport. 2008;18(1):4048. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Seagrave RA, Perez L, McQueeney S, Toby EB, Key V, Nelson JD. Preventive effects of eccentric training on acute hamstring muscle injury in professional baseball. Orthop J Sport Med. 2014;2(6):232596711453535. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sport. 2003;13(4):244250. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sport Med. 2012;42(3):209226. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Larruskain J, Celorrio D, Barrio I, et al. Genetic variants and hamstring injury in soccer: an association and validation study. Med Sci Sports Exerc. 2018;50(2):361368. PubMed ID: 28976491 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):15241535. PubMed ID: 26675089 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lee JWY, Mok KM, Chan HCK, Yung PSH, Chan KM. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: a prospective study of 146 professional players. J Sci Med Sport. 2018;21(8):789793. PubMed ID: 29233665 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bourne MN, Opar DA, Williams MD, Shield AJ. Eccentric knee flexor strength and risk of hamstring injuries in rugby union. Am J Sports Med. 2015;43(11):26632670. PubMed ID: 26337245 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med. 2016;50(23):14671472. PubMed ID: 26817705 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Timmins RG, Bourne MN, Hickey JT, et al. Effect of prior injury on changes to biceps femoris architecture across an Australian Football League season. Med Sci Sports Exerc. 2017;49(10):21022109. PubMed ID: 28548976 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Opar DA, Piatkowski T, Williams MD, Shield AJ. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636640. PubMed ID: 23886674 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Onambélé GL, Maganaris CN, Mian OS, et al. Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. J Biomech. 2008;42(7):956. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Walker S, Blazevich AJ, Haff GG, Tufano JJ, Newton RU, Häkkinen K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front Physiol. 2016;27(7):149. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Friedmann-Bette B, Bauer T, Kinscherf R, et al. Effects of strength training with eccentric overload on muscle adaptation in male athletes. Eur J Appl Physiol. 2010;108(4):821836. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Gerber JP, Marcus RL, Dibble LE, Greis PE, Burks RT, LaStayo PC. Effects of early progressive eccentric exercise on muscle size and function after anterior cruciate ligament reconstruction: a 1-year follow-up study of a randomized clinical trial. Phys Ther. 2009;89(1):5159. PubMed ID: 18988664 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43(8):556568. PubMed ID: 18981046 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Timmins RG, Ruddy JD, Presland J, et al. Architectural changes of the biceps femoris long head after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499508. PubMed ID: 26460634 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Geremia JM, Baroni BM, Bobbert MF, Bini RR, Lanferdini FJ, Vaz MA. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol. 2018;118(8):17251736. PubMed ID: 29858689 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Baroni BM, Rodrigues R, Franke RA, Geremia JM, Rassier DE, Vaz MA. Time course of neuromuscular adaptations to knee extensor eccentric training. Int J Sports Med. 2013;34(10):904911. PubMed ID: 23526592 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    McCall A, Carling C, Nedelec M, et al. Risk factors, testing and preventative strategies for non-contact injuries in professional football: current perceptions and practices of 44 teams from various premier leagues. Br J Sports Med. 2014;48(18):13521357. PubMed ID: 24837243 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Meurer MC, Silva MF, Baroni BM. Strategies for injury prevention in Brazilian football: perceptions of physiotherapists and practices of premier league teams. Phys Ther Sport. 2017;28:18. PubMed ID: 28886473 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Gabbe BJ, Branson R, Bennell KL. A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. J Sci Med Sport. 2006;9(1–2):103109. PubMed ID: 16574482 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sport Med. 2019;53(21):13621370. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Robinson KA, Dickersin K. Development of a highly sensitive search strategy for the retrieval of reports of controlled trials using PubMed. Int J Epidemiol. 2002;31(1):150153. PubMed ID: 11914311 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Hewett TE, Myer GD, Zazulak BT. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport. 2008;11(5):452459. PubMed ID: 17875402 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Behan FP, Moody R, Patel TS, Lattimore E, Maden-Wilkinson TM, Balshaw TG. Biceps femoris long head muscle fascicle length does not differ between sexes. J Sports Sci. 2019;37(21):24522458. PubMed ID: 31303128 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Higgins JPT, Altman DG. Higgins 2011. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [Updated March 2011]. Chichester, United KingdomThe Cochrane Collaboration; 2011. doi:10.1002/9780470712184.ch8

    • Search Google Scholar
    • Export Citation
  • 52.

    Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book SeriesChichester, United KingdomThe Cochrane Collaboration2008. doi:10.1002/9780470712184

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992;45(7):769773. PubMed ID: 1619456 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ Br Med J. 2003;327(7414):557560. doi:

  • 55.

    Salci Y, Yildirim A, Celik O, Ak E, Kocak S, Korkusuz F. The effects of eccentric hamstring training on lower extremity strength and landing kinetics in recreational female athletes. Isokinet Exerc Sci. 2013;21(1):1118. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Seymore KD, Domire ZJ, DeVita P, Rider PM, Kulas AS. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol. 2017;117(5):943953. PubMed ID: 28280975 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469477. PubMed ID: 27660368 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Jelicic Kadic A, Vucic K, Dosenovic S, Sapunar D, Puljak L. Extracting data from figures with software was faster, with higher interrater reliability than manual extraction. J Clin Epidemiol. 2016;74:119123. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663672. PubMed ID: 26754149 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Delextrat A, Bateman J, Ross C, et al. Changes in torque-angle profiles of the hamstrings and hamstrings-to-quadriceps ratio after two hamstring strengthening exercise interventions in female hockey players. J Strength Cond Res. 2020;34(2):396405. PubMed ID: 31425454 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Iga J, Fruer CS, Deighan M, Croix MDS, James DVB. Nordic hamstrings exercise-engagement characteristics and training responses. Int J Sports Med. 2012;33(12):10001004. PubMed ID: 22895870 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Ishøi L, Hölmich P, Aagaard P, Thorborg K, Bandholm T, Serner A. Effects of the Nordic hamstring exercise on sprint capacity in male football players: a randomized controlled trial. J Sports Sci. 2018;36(14):16631672. PubMed ID: 29192837 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Lovell R, Knox M, Weston M, Siegler JC, Brennan S, Marshall PWM. Hamstring injury prevention in soccer: before or after training? Scand J Med Sci Sport. 2018;28(2):658666. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Mendiguchia J, Conceição F, Edouard P, et al. Sprint versus isolated eccentric training: comparative effects on hamstring architecture and performance in soccer players. PLoS One. 2020;15(2):e0228283. PubMed ID: 32045411 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Mjølsnes R, Arnason A, Østhagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sport. 2004;14(5):311317. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Ribeiro-Alvares J, Marques VB, Vaz MA, Baroni BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32(5):12541262. PubMed ID: 28459795 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Suarez-Arrones L, Lara-Lopez P, Rodriguez-Sanchez P, et al. Dissociation between changes in sprinting performance and Nordic hamstring strength in professional male football players. PLoS One. 2019;14(3):e0213375. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Small K, Mcnaughton L, Greig M, Lovell R. Effect of timing of eccentric hamstring strengthening exercises during soccer training: implications for muscle fatigability. J Strength Cond Res. 2009;23(4):10771083. PubMed ID: 19528859 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Schache AG, Dorn TW, Blanch PD, Brown NAT, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44(4):647658. PubMed ID: 21912301 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sport Med. 2013;43(12):12071215. doi:

  • 71.

    Van Dyk N, Bahr R, Whiteley R, et al. Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries. Am J Sports Med. 2016;44(7):17891795. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Reilly T, Morris T, Whyte G. The specificity of training prescription and physiological assessment: a review. J Sports Sci. 2009;27(6):575589. PubMed ID: 19340630 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Lovell R, Whalan M, Marshall PWM, Sampson JA, Siegler JC, Buchheit M. Scheduling of eccentric lower limb injury prevention exercises during the soccer micro-cycle: which day of the week? Scand J Med Sci Sport. 2018;28(10):22162225. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Severo-Silveira L, Dornelles MP, Lima-E-Silva FX, et al. Progressive workload periodization maximizes effects of Nordic hamstring exercise on muscle injury risk factors. J strength Cond Res. 2018;28(7):17751783. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sport. 2018;28(7):17751783. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. 2006;209(3):289310. PubMed ID: 16928199 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905913. PubMed ID: 25207929 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Lieber RL, Bodine-Fowler SC. Skeletal muscle mechanics: implications for rehabilitation. Phys Ther. 1993;73(12):844856. PubMed ID: 8248293 doi:

  • 79.

    Lieber RL, Fridén J. Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol. 1993;74(2):520526. PubMed ID: 8458765 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209221. PubMed ID: 2317547 doi:

  • 81.

    Geremia JM, Baroni BM, Lanferdini FJ, Bini RR, Sonda FC, Vaz MA. Time course of neuromechanical and morphological adaptations to triceps surae isokinetic eccentric training. Phys Ther Sport. 2018;34:8491. PubMed ID: 30248491 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Al Attar WSA, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sport Med. 2017;47(5):907916. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Goode AP, Reiman MP, Harris L, et al. Eccentric training for prevention of hamstring injuries may depend on intervention compliance: a systematic review and meta-analysis. Br J Sports Med. 2015;49(6):349356. PubMed ID: 25227125 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 670 670 253
Full Text Views 19 19 4
PDF Downloads 13 13 3