Different Time Course of Recovery in Achilles Tendon Thickness After Low-Load Resistance Training With and Without Blood Flow Restriction

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Blood flow restriction research has focused on muscular strength and hypertrophy. Limited data have been reported about the blood flow restriction effect on the tendon. Objective: To analyze and compare the time course of recovery in Achilles tendon thickness after a single bout of low-intensity resistance training (LI-RT) and low-intensity blood flow restriction training (LI-BFRT). Methods: A total of 56 healthy participants (24.60 [4.0] y; 23.65 [3.4] body mass index) were included. The dominant leg was assigned for LI-BFRT using low load (30% 1-repetition maximum) and 30% of the total occlusion pressure (52.21 [17.89] mm Hg) in plantar-flexion exercise (1 × 30 + 3 × 15 repetitions). The nondominant leg was assumed as a control condition. Main Outcome Measure: Sonography images were taken before the intervention, immediately posttraining, and 24 hours after exercise (post-24) for the Achilles tendon thickness. Results: Changes in Achilles tendon thickness for LI-BFRT group were significant post- (−14.5%; P < .05) and post-24 (−9.2%; P < .05). In contrast, LI-RT group showed a transient decrease after exercise (−9.67%; P < .05) followed by a recovery of thickness post-24 (−1.06%; P < .05). Thickness post-24 was different between LI-BFRT versus LI-RT (P < .01). Hedge effect size analysis showed a large effect (g = 0.90) in LI-BFRT pre–post condition and a medium effect (g = 0.57) in post- to post-24. The LI-RT obtained a medium effect (g = 0.53) in pre–post condition and a small effect (g = 0.49) in post- to post-24. Conclusions: This study showed a different time course of the acute response in Achilles tendon thickness between LI-BFRT and LI-RT. This may be associated with intratendinous fluid movement in response to LI-BFRT.

Chulvi-Medrano is with the Department of Physical and Sports Education, Faculty of Physical Activity and Sport Sciences, University of Valencia, Valencia, Spain. Picón-Martínez, Cortell-Tormo, Tortosa-Martínez, and Alonso-Aubin are with the Department of General and Specific Didactics, University of Alicante, Alicante, Spain. Alakhdar is with the Department of Physical Therapy, University of Valencia, Valencia, Spain.

Chulvi-Medrano (ivan.chulvi@uv.es) is corresponding author.
  • 1.

    Kraemer W, Fleck S, Evans WJ. Strength and power training: physiological mechanisms of adaptation. Exerc Sport Sci Rev. 1996;24(1):363397. https://journals.lww.com/acsm-essr/Citation/1996/00240/Strength_and_Power_Training__Physiological.14.aspx

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Sale D. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5):134145.

  • 3.

    Scott A, Docking S, Vicenzino B, et al. Sports and exercise-related tendinopathies: a review of selected topical issues by participants of the second International Scientific Tendinopathy Symposium (ISTS) Vancouver 2012. Br J Sports Med. 2013;47(9):536544. PubMed ID: 23584762 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S. How animals move: an integrative view. Science. 2000;288(5463):100106. PubMed ID: 10753108 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Magnusson SP, Narici MV, Maganaris CN, Kjaer M. Human tendon behaviour and adaptation, in vivo. J Physiol. 2008;586(1):7181. PubMed ID: 17855761 doi:

  • 6.

    Grigg NL, Wearing SC, Smeathers JE. Eccentric calf muscle exercise produces a greater acute reduction in Achilles tendon thickness than concentric exercise. Br J Sports Med. 2009;43(4):280283. PubMed ID: 19019906 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kubo K, Ikebukuro T, Yaeshima K, Yata H, Tsunoda N, Kanehisa H. Effects of static and dynamic training on the stiffness and blood volume of tendon in vivo. J Appl Physiol. 2009;106(2):412417. PubMed ID: 19112156 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kubo K, Ishiguro N, Sato Y, et al. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech. 2006;22(2):112119. PubMed ID: 16871002 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Fisker FY, Kildegaard S, Thygesen M, Grosen K, Pfeiffer-Jensen M. Acute tendon changes in intense CrossFit workout: an observational cohort study. Scand J Med Sci Sport. 2017;27(11):12581262. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kim D, Loenneke JP, Ye X, et al. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve. 2017;56(6):E126E133. PubMed ID: 28224640 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kjaer M, Heinemeier KM. Eccentric exercise: acute and chronic effects on healthy and diseased tendons. J Appl Physiol. 2014;116(11):14351438. PubMed ID: 24436295 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sata S. Kaatsu training for patella tendinitis patient. Int J KAATSU Train Res. 2008;1(1):2932. doi:

  • 13.

    Slysz JT, Burr JF. Enhanced metabolic stress augments ischemic preconditioning for exercise performance. Front Physiol. 2018;9:1621. PubMed ID: 30498458 doi:

  • 14.

    Vechin F, Libardi C, Conceicao M, et al. Comparison between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):10711076. PubMed ID: 25264670 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Syha R, Grau S, Nieß AM, et al. Computer-based quantification of the Achilles tendon thickness in sequential B-mode ultrasound images: a study of feasibility and reliability. Arch Orthop Trauma Surg. 2014;134(10):14431449. PubMed ID: 25052771 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Fredberg U, Bolvig L, Andersen NT, Stengaard-Pedersen K. Ultrasonography in evaluation of Achilles and patella tendon thickness. Ultraschall der Medizin. 2008;29(1):6065. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Mohmara YA, Chulvi-Medrano I, de Marcos DG, Granell JC, Martinez JB. Effects of low-intensity concentric combined with blood flow restriction on Achilles tendon. Br J Sports Med. 2014;48(suppl 2):A3A4. http://bjsm.bmj.com/content/48/Suppl_2/A3.2%5Cnhttp://bjsm.bmj.com/content/48/Suppl_2/A3.2.abstract

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Skou ST, Aalkjaer JM. Ultrasonographic measurement of patellar tendon thickness—a study of intra- and interobserver reliability. Clin Imaging. 2013;37(5):934937. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tardioli A, Malliaras P, Maffulli N. Immediate and short-term effects of exercise on tendon structure: biochemical, biomechanical and imaging responses. Br Med Bull. 2012;103(1):169202. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51:10031011. PubMed ID: 28259850 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Martín-Hernández J, Marín PJ, Menéndez H, Ferrero C, Loenneke JP, Herrero AJ. Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sport. 2013;23(2):17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Cooper H, Hedges L, Valentine J. The Handbook of Research Synthesis and Meta-Analysis. New York, NY: Russell Sage Foundation; 2009.

  • 23.

    Loenneke J, Abe T, Wilson J, et al. Blood flow restriction: an evidence based progressive model (Review). Acta Physiol Hung. 2012;99(3):235250. PubMed ID: 22982712 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sport Med. 2015;45(2):187200. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Loenneke J, Fahs C, Thiebaud R, et al. The acute muscle swelling effects of blood flow restriction. Acta Physiol Hung. 2012;99(4):400410. PubMed ID: 23238542 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Korakakis V, Whiteley R, Epameinontidis K. Blood Flow Restriction induces hypoalgesia in recreationally active adult male anterior knee pain patients allowing therapeutic exercise loading. Phys Ther Sport. 2018;32:235243. PubMed ID: 29879638 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409416. PubMed ID: 18812414 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wearing SC, Smeathers JE, Hooper SL, Locke S, Purdam C, Cook JL. The time course of in vivo recovery of transverse strain in high-stress tendons following exercise. Br J Sports Med. 2014;48(5):383387. PubMed ID: 23525554 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lanir Y. Biorheology and fluid flux in swelling tissues. Biorheology. 1987;24:173187. PubMed ID: 3651590 doi:

  • 30.

    Centner C, Lauber B, Seynnes OR, et al. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared to high-load resistance training. J Appl Physiol. 2019;127(6):16601667. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1060 1060 220
Full Text Views 26 26 4
PDF Downloads 26 26 6