The Effects of Gluteal Strength and Activation on the Relationship Between Femoral Alignment and Functional Valgus Collapse During a Single-Leg Landing

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: A bias toward femoral internal rotation is a potential precursor to functional valgus collapse. The gluteal muscles may play a critical role in mitigating these effects. Objective: Determine the extent to which gluteal strength and activation mediate associations between femoral alignment measures and functional valgus collapse. Design: Cross-sectional. Setting: Research laboratory. Patients or Other Participants: Forty-five females (age = 20.1 [1.7] y; height = 165.2 [7.6] cm; weight = 68.6 [13.1] kg) and 45 males (age = 20.8 [2.0] y; height = 177.5 [8.7] cm; weight = 82.7 [16.5] kg), healthy for 6 months prior. Intervention(s): Femoral alignment was measured prone. Hip-extension and abduction strength were obtained using a handheld dynamometer. Three-dimensional biomechanics and surface electromyography were obtained during single-leg forward landings. Main Outcome Measures: Forward stepwise multiple linear regressions determined the influence of femoral alignment on functional valgus collapse and the mediating effects of gluteus maximus and medius strength and activation. Results: In females, less hip abduction strength predicted greater peak hip adduction angle (R2 change = .10; P = .02), and greater hip-extensor activation predicted greater peak knee internal rotation angle (R2 change = .14; P = .01). In males, lesser hip abduction strength predicted smaller peak knee abduction moment (R2 change = .11; P = .03), and the combination of lesser hip abduction peak torque and lesser gluteus medius activation predicted greater hip internal rotation angle (R2 change = .15; P = .04). No meaningful mediation effects were observed (υadj < .01). Conclusions: In females, after accounting for femoral alignment, less gluteal strength and higher muscle activation were marginally associated with valgus movement. In males, less gluteal strength was associated with a more varus posture. Gluteal strength did not mediate femoral alignment. Future research should determine the capability of females to use their strength efficiently.

Hogg is with the Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, USA. Ackerman is with the Department of Psychological and Quantitative Foundations, University of Iowa, Iowa City, IA, USA. Nguyen is with Division of Athletic Training, West Virginia University, Morgantown, WV, USA. Ross, Schmitz, and Shultz are with the Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA. Vanrenterghem is with the Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.

Hogg (Jennifer-hogg@utc.edu) is corresponding author.
  • 1.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Meyer EG, Haut RC. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech. 2008;41(16):33773383. PubMed ID: 19007932 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ireland ML. Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train. 1999;34(2):150154. http://search.proquest.com/docview/206645539/fulltextPDF?accountid=14604. Accessed February 21, 2015. PubMed ID: 16558558

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jones PA, Herrington LC, Graham-Smith P. Technique determinants of knee abduction moments during pivoting in female soccer players. Clin Biomech. 2016;31:107112. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sigward SM, Powers CM. Loading characteristics of females exhibiting excessive valgus moments during cutting. Clin Biomech. 2007;22(7):827833. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252259. PubMed ID: 19182110 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hollman JH, Galardi CM, Lin IH, Voth BC, Whitmarsh CL. Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women. Clin Biomech. 2014;29(4):468474. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Imwalle LE, Myer GD, Ford KR, Hewett TE. Relationship between hip and knee kinematics in athletic women during cutting maneuvers: a possible link to noncontact anterior cruciate ligament injury and prevention. J Strength Cond Res. 2009;23(8):22232230. PubMed ID: 19826304 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nguyen A-D, Shultz SJ. Sex differences in clinical measures of lower extremity alignment. J Orthop Sports Phys Ther. 2007;37(7):389398. PubMed ID: 17710908 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Howard JS, Fazio MA, Carl G, Uhl TL, Jacobs CA. Structure, sex, and strength and knee and hip kinematics during landing. J Athl Train. 2011;46(4):376385. PubMed ID: 21944069 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nguyen A-D, Shultz SJ, Schmitz RJ. Landing biomechanics in participants with different static lower extremity alignment profiles. J Athl Train. 2015;50(5):498507. PubMed ID: 25658815 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kaneko M, Sakuraba K. Association between femoral anteversion and lower extremity posture upon single-leg landing: implications for anterior cruciate ligament injury. J Phys Ther Sci. 2013;25(10):12131217. PubMed ID: 24259760 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kozic S, Gulan G, Matovinovic D, Nemec B, Sestan B, Ravlic-Gulan J. Femoral anteversion related to side differences in hip rotation. Passive rotation in 1,140 children aged 8-9 years. Acta Orthop Scand. 1997;68(6):533536. PubMed ID: 9462351 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fan L, Copple TJ, Tritsch AJ, Shultz SJ. Clinical and instrumented measurements of hip laxity and their associations with knee laxity and general joint laxity. J Athl Train. 2014;49(5):590598. PubMed ID: 25098747 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Shultz SJ, Nguyen A, Schmitz R. Differences in lower extremity anatomical and postural characteristics in males and females between maturation groups. J Orthop Sport Phys Ther. 2008;38(3):137149. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gomes JLE, de Castro JV, Becker R. Decreased hip range of motion and noncontact injuries of the anterior cruciate ligament. Arthroscopy. 2008;24(9):10341037. PubMed ID: 18760211 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nyland J, Kuzemchek S, Parks M, Caborn DNM. Femoral anteversion influences vastus medialis and gluteus medius EMG amplitude: composite hip abductor EMG amplitude ratios during isometric combined hip abduction-external rotation. J Electromyogr Kinesiol. 2004;14(2):255261. PubMed ID: 14962778 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Radin EL. (1980) Biomechanics of the human hip. Clin Orthop Relat Res. 1979;(152):2834.

  • 19.

    Kendall F, McCreary E, Provance P, Rodgers M, Romani W. Muscles: Testing and Function, with Posture and Pain. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005.

    • Search Google Scholar
    • Export Citation
  • 20.

    Sigward SM, Ota S, Powers CM. Predictors of frontal plane knee excursion during a drop land in young female soccer players. J Orthop Sports Phys Ther. 2008;38(11):661667. PubMed ID: 18978451 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Marx R, Stump T, Jones E, Wickiewicz T, Warren R. Development and evaluation of an activity rating scale for disorders of the knee. Am J Sport Med. 2001;29(2):213218. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Magee D. Orthopedic Physical Assessment. Philadelphia, PA: W.B. Saunders; 1997.

  • 23.

    Ruwe. Clinical Determination of Femoral Anteversion. J Bone Jt Surg. 1992:820830.

  • 24.

    Hogg J, Schmitz R, Nguyen A-D, Shultz SJ. A comparison of passive hip range of motion values across sex and sport. J Athl Train. 2018;53(6):560567. PubMed ID: 29897784 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Starkey C, Ryan J. Orthopedic & Athletic Injury Evaluation Handbook. Philadelphia, PA: F.A. Davis; 2003.

  • 26.

    Krause DA, Schlagel SJ, Stember BM, Zoetewey JE, Hollman JH. Influence of lever arm and stabilization on measures of hip abduction and adduction torque obtained by hand-held dynamometry. Arch Phys Med Rehabil. 2007;88(1):3742. PubMed ID: 17207673 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bell AL, Brand RA, Pedersen R. Prediction of hip joint centre location from external landmarks. Hum Mov Sci. 1989;8(1):316. doi:

  • 28.

    Jacobs CA, Uhl TL, Mattacola CG, Shapiro R, Rayens WS. Hip abductor function and lower extremity landing kinematics: sex differences. J Athl Train. 2007;42(1):7683. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1896084&tool=pmcentrez&rendertype=abstract. PubMed ID: 17597947

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Winter D. Biomechanics and Motor Control of Human Movement. 2nd ed. New York, NY: John Wiley & Sons, Inc.; 1990.

  • 30.

    Norcross MF, Johnson ST, Pollard CD, Chang EW, Hoffman MA. Normalization influences knee abduction moment results: could it influence ACL-injury research, too? J Sci Med Sport. 2017;20(4):318321. PubMed ID: 27816458 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Dempster W. Space requirements of seated operator. WACD Tech Rep. 1955:TR-55-59.

  • 32.

    Franco N, Bittencourt N, Ribeiro T, et al. Reference values of hip abductor torque among youth athletes: influence of age, sex, and sports. Phys Ther Sport. 2015;(2016).

    • Search Google Scholar
    • Export Citation
  • 33.

    Lachowicz M, Preacher K, Kelley K. A novel measure of effect size for mediation analysis. Psychol Methods. 2018;23(2):244261. PubMed ID: 29172614 doi:.

  • 34.

    Kelley K. MBESS: The MBESS R Package. 2017.

  • 35.

    R Core Team. R: a language and environment for statistical computing. 2017. https://www.r-project.org/.

  • 36.

    Fukuda Y, Woo SL-Y, Loh JC, et al. A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res. 2003;21(6):11071112. PubMed ID: 14554225 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Marotta N, Demeco A, de Scorpio G, Indino A, Iona T, Ammendolia A. Late activation of the vastus medialis in determining the risk of anterior cruciate ligament injury in soccer players. J Sport Rehabil. 2020;29(7):952955. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):11231130. PubMed ID: 17468378 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    MacKinnon D, Warsi G, Dwyer J. A simulation study of mediated effect measures. Multivariate Behav Res. 1995;(30):3741.

All Time Past Year Past 30 Days
Abstract Views 385 385 98
Full Text Views 22 22 8
PDF Downloads 16 16 7