Coupled Gluteus Maximus and Gluteus Medius Recruitment Patterns Modulate Hip Adduction Variability During Single-Limb Step-Downs: A Cross-Sectional Study

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Examining the coordinated coupling of muscle recruitment patterns may provide insight into movement variability in sport-related tasks. Objective: The purpose of this study was to examine the relationship between coupled gluteus maximus and medius recruitment patterns and hip-adduction variability during single-limb step-downs. Design: Cross-sectional. Setting: Biomechanics laboratory. Participants: Forty healthy adults, including 26 women and 14 men, mean age 23.8 (1.6) years, mean body mass index 24.2 (3.1) kg/m2, participated. Interventions: Lower-extremity kinematics were acquired during 20 single-limb step-downs from a 19-cm step height. Electromyography (EMG) signals were captured with surface electrodes. Isometric hip-extension strength was obtained. Main Outcome Measures: Hip-adduction variability, measured as the SD of peak hip adduction across 20 repetitions of the step-down task, was measured. The mean amplitudes of gluteus maximus and gluteus medius EMG recruitment were examined. Determinism and entropy of the coupled EMG signals were computed with cross-recurrence quantification analyses. Results: Hip-adduction variability correlated inversely with determinism (r = −.453, P = .018) and positively with entropy (r = .409, P = .034) in coupled gluteus maximus/medius recruitment patterns but not with hip-extensor strength nor with magnitudes of mean gluteus maximus or medius recruitment (r = −.003, .081, and .035; P = .990, .688, and .864, respectively). Conclusion: Hip-adduction variability during single-limb step-downs correlated more strongly with measures of coupled gluteus maximus and medius recruitment patterns than with hip-extensor strength or magnitudes of muscle recruitment. Examining coupled recruitment patterns may provide an alternative understanding of the extent to which hip neuromuscular control modulates lower-extremity kinematics beyond examining muscle strength or EMG recruitment magnitudes.

The authors are with the Program in Physical Therapy, Mayo Clinic College of Medicine and Science; and the Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN, USA.

Hollman (hollman.john@mayo.edu) is corresponding author.
  • 1.

    Boden BP, Sheehan FT, Torg JS, Hewett TE. Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg. 2010;18(9):520527. PubMed ID: 20810933 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boling MC, Padua DA, Marshall SW, Guskiewicz K, Pyne S, Beutler A. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: the joint undertaking to monitor and prevent ACL injury (JUMP-ACL) cohort. Am J Sports Med. 2009;37(11):21082116. PubMed ID: 19797162 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Casartelli NC, Maffiuletti NA, Item-Glatthorn JF, et al. Hip muscle weakness in patients with symptomatic femoroacetabular impingement. Osteoarthritis Cartilage. 2011;19(7):816821. PubMed ID: 21515390 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926934. PubMed ID: 15179160 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Waryasz GR, McDermott AY. Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors. Dyn Med. 2008;7(1):9. doi:

  • 6.

    Finnoff JT, Hall MM, Kyle K, Krause DA, Lai J, Smith J. Hip strength and knee pain in high school runners: a prospective study. PM R. 2011;3:792801. PubMed ID: 21821478 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Fredericson M, Cookingham CL, Chaudhari AM, Dowdell BC, Oestreicher N, Sahrmann SA. Hip abductor weakness in distance runners with iliotibial band syndrome. Clin J Sport Med. 2000;10(3):169175. PubMed ID: 10959926 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fulkerson JP, Arendt EA. Anterior knee pain in females. Clin Orthop Relat Res. 2000;372:6973. doi:

  • 9.

    Ireland ML, Willson JD, Ballantyne BT, Davis IM. Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther. 2003;33(11):671676. PubMed ID: 14669962 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J. The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med. 2005;33(2):197207. PubMed ID: 15701605 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573578. PubMed ID: 10875418

  • 12.

    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33(11):639646. PubMed ID: 14669959 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):7179. PubMed ID: 16558670

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hollman JH, Ginos BE, Kozuchowski J, Vaughn AS, Krause DA, Youdas JW. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J Sport Rehabil. 2009;18(1):104117. PubMed ID: 19321910 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hollman JH, Hohl JM, Kraft JL, Strauss JD, Traver KJ. Modulation of frontal-plane knee kinematics by hip-extensor strength and gluteus maximus recruitment during a jump-landing task in healthy women. J Sport Rehabil. 2013;22(3):184190. PubMed ID: 23579368 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Zazulak BT, Ponce PL, Straub SJ, Medvecky MJ, Avedisian L, Hewett TE. Gender comparison of hip muscle activity during single-leg landing. J Orthop Sports Phys Ther. 2005;35(5):292299. PubMed ID: 15966540 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hollman JH, Galardi CM, Lin IH, Voth BC, Whitmarsh CL. Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women. Clin Biomech. 2014;29(4):468474. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Jacobs CA, Uhl TL, Mattacola CG, Shapiro R, Rayens WS. Hip abductor function and lower extremity landing kinematics: sex differences. J Athletic Train. 2007;42(1):7683. PubMed ID: 17597947

    • Search Google Scholar
    • Export Citation
  • 20.

    Criswell E. Cram’s Introduction to Surface Electromyography. 2nd ed. Sudbury, MA: Jones and Bartlett Publishers; 2011.

  • 21.

    Hislop HJ, Montgomery J. Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination. 8th ed. St. Louis, MO: Saunders Elsevier; 2007.

    • Search Google Scholar
    • Export Citation
  • 22.

    Webber CL Jr, Zbilut JP. Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol. 1994;76(2):965973. PubMed ID: 8175612 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Takens F. Detecting strange attractors in turbulence. In: Rand DA, Young LS, eds. Dynamical Systems and Turbulence, Lecture Notes in Mathematics. Vol 898. Berlin/Heidelberg: Springer-Verlag; 1981:366381.

    • Search Google Scholar
    • Export Citation
  • 24.

    Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A. 1986;33(2):11341140. doi:

  • 25.

    Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A. 1992;45(6):34033411. PubMed ID: 9907388 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Riley MA, Balasubramaniam R, Turvey MT. Recurrence quantification analysis of postural fluctuations. Gait Posture. 1999;9(1):6578. PubMed ID: 10575072 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Marwan N, Kurths J. Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett A. 2002;302(5):299307. doi:

  • 28.

    McCamley J, Denton W, Lyden E, Yentes JM. Measuring coupling of rhythmical times series using cross sample entropy and cross recurrence quantification analysis. Comput Math Methods Med. 2017;2017:11. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Del Santo F, Gelli F, Mazzocchio R, Rossi A. Recurrence quantification analysis of surface EMG detects changes in motor unit synchronization induced by recurrent inhibition. Exp Brain Res. 2007;178(3):308315. PubMed ID: 17053906 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Dideriksen JL, Falla D, Bækgaard M, Mogensen ML, Steimle KL, Farina D. Comparison between the degree of motor unit short-term synchronization and recurrence quantification analysis of the surface EMG in two human muscles. Clin Neurophysiol. 2009;120(12):20862092. PubMed ID: 19828371 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Filligoi G, Felici F. Detection of hidden rhythms in surface EMG signals with a non-linear time-series tool. Med Eng Phys. 1999;21(6):439448. doi:

  • 32.

    Webber CL Jr, Zbilut JP. Recurrence quantification analysis of nonlinear dynamical systems. In: Riley MA, Van Orden GC, eds. Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences. 2005. http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp. Accessed June 15, 2015.

    • Search Google Scholar
    • Export Citation
  • 33.

    Liu Y, Kankaanpãã M, Zbilut JP, Webber CL Jr. EMG recurrence quantifications in dynamic exercise. Biol Cybern. 2004;90(5):337348. PubMed ID: 15221394 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Jeong J, Gore JC, Peterson B. Detecting determinism in short time series, with an application to the analysis of a stationary EEG recording. Biol Cybern. 2002;86(5):335342. PubMed ID: 11984648 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Li K, Li Z-M. Cross recurrence quantification analysis of precision grip following peripheral median nerve block. J Neuroeng Rehabil. 2013;10(1):28. doi:

  • 36.

    Pincus S, Singer BH. Randomness and degrees of irregularity. Proc Natl Acad Sci U S A. 1996;93(5):20832088. PubMed ID: 11607637 doi:

  • 37.

    Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039H2049. PubMed ID: 10843903 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Papaioannou VE, Chouvarda I, Maglaveras N, Dragoumanis C, Pneumatikos I. Changes of heart and respiratory rate dynamics during weaning from mechanical ventilation: a study of physiologic complexity in surgical critically ill patients. J Crit Care. 2011;26(3):262272. PubMed ID: 20869842 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Manor B, Costa MD, Hu K, et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol. 2010;109(6):17861791. PubMed ID: 20947715 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Coco MI, Dale R. Cross-recurrence quantification analysis of categorical and continuous time series: an R package. Front Psychol. 2014;5:510. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 63 63 63
Full Text Views 1 1 1
PDF Downloads 1 1 1