Effect of Knee Joint Angle on Regional Hamstrings Activation During Isometric Knee-Flexion Exercise

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Each hamstring muscle is subdivided into several regions by multiple motor nerve branches, which implies each region has different muscle activation properties. However, little is known about the muscle activation of each region with a change in the knee joint angle. Understanding of regional activation of the hamstrings could be helpful for designing rehabilitation and training programs targeted at strengthening a specific region. Objective: To investigate the effect of knee joint angle on the activity level of several regions within the individual hamstring muscles during isometric knee-flexion exercise with maximal effort (MVCKF). Design: Within-subjects repeated measures. Setting: University laboratory. Participants: Sixteen young males with previous participation in sports competition and resistance training experience. Intervention: The participants performed 2 MVCKF trials at each knee joint angle of 30°, 60°, and 90°. Outcome Measures: Surface electromyography was used to measure muscle activity in the proximal, middle, and distal regions of the biceps femoris long head (BFlh), semitendinosus, and semimembranosus of hamstrings at 30°, 60°, and 90° of knee flexion during MVCKF. Results: Muscle activity levels in the proximal and middle regions of the BFlh were higher at 30° and 60° of knee flexion than at 90° during MVCKF (all: P < .05). Meanwhile, the activity levels in the distal region of the BFlh were not different among all of the evaluated knee joint angles. In semitendinosus and semimembranosus, the activity levels were higher at 30° and 60° than at 90°, regardless of region (all: P < .05). Conclusion: These findings suggest that the effect of knee joint angle on muscle activity level differs between regions of the BFlh, whereas that is similar among regions of semitendinosus and semimembranosus during MVCKF.

Kawama and Okudaira are with the Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan. Fukuda is with the Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA. Maemura and Tanigawa are with the Institute of Health and Sports Sciences, University of Tsukuba, Ibaraki, Japan.

Kawama (lie.and.truth1882@gmail.com) is corresponding author.
  • 1.

    Waldén M, Hägglund M, Ekstrand J. UEFA Champions League study: a prospective study of injuries in professional football during the 2001–2002 season. Br J Sports Med. 2005;39(8):542546. PubMed ID: 16046340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Malliaropoulos N, Isinkaye T, Tsitas K, Maffulli N. Reinjury after acute posterior thigh muscle injuries in elite track and field athletes. Am J Sports Med. 2011;39(2):304310. PubMed ID: 21051422 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hägglund M, Waldén M, Ekstrand J. Risk factors for lower extremity muscle injury in professional soccer: the UEFA Injury Study. Am J Sports Med. 2013;41(2):327335. PubMed ID: 23263293 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hickey J, Shield AJ, Williams MD, Opar DA. The financial cost of hamstring strain injuries in the Australian Football League. Br J Sports Med. 2014;48(8):729730. PubMed ID: 24124035 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007;35(2):197206. PubMed ID: 17170160 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Dabrowski C, Serpell BG, Spratford W, et al. A retrospective analysis of hamstring injuries in elite rugby athletes: more severe injuries are likely to occur at the distal myofascial junction. Phys Ther Sport. 2019;38:192198. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35(10):17161724. PubMed ID: 17567821 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Balius R, Bossy M, Pedret C, et al. Semimembranosus muscle injuries in sport. A practical MRI use for prognosis. Sports Med Int Open. 2017;1(03):E94E100. PubMed ID: 30539092 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696703. PubMed ID: 23290179 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol. 2008;37(12):1101. PubMed ID: 18649077 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523530. PubMed ID: 23402871 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Opar DA, Williams M, Timmins R, Hickey J, Duhig S, Shield A. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med Sci Sports Exerc. 2015;47(4):857865. PubMed ID: 25137368 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Delahunt E, McGroarty M, Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663672. PubMed ID: 26754149 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469477. PubMed ID: 27660368 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hasler EM, Denoth J, Stacoff A, Herzog W. Influence of hip and knee joint angles on excitation of knee extensor muscles. Electroencephalogr Clin Neurophysiol. 1994;34(6):355361.

    • Search Google Scholar
    • Export Citation
  • 16.

    Hirose N, Tsuruike M. Differences in the Electromyographic Activity of the Hamstring, Gluteus Maximus, and Erector Spinae Muscles in a Variety of Kinetic Changes. J Strength Cond Res. 2018;32(12):33573363. PubMed ID: 30102684 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179(3):125141. PubMed ID: 15947463 doi:

  • 18.

    Hegyi A, Peter A, Finni T, Cronin NJ. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff leg deadlift defined with high-density electromyography. Scand J Med Sci Sports. 2018;28(3):9921000. PubMed ID: 29143379 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wakahara T, Fukutani A, Kawakami Y, Yanai T. Nonuniform muscle hypertrophy: its relation to muscle activation in training session. Med Sci Sports Exerc. 2013;45(11):21582165. PubMed ID: 23657165 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kuiken TA, Lowery MM, Stoykov NS. The effect of subcutaneous fat on myoelectric signal amplitude and cross-talk. Prosthet Orthot Int. 2003;27(1):4854. PubMed ID: 12812327 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Nordander C, Willner J, Hansson GA, et al. Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and BMI, on the EMG amplitude. Eur J Appl Physiol. 2003;89(6):514519. PubMed ID: 12712347 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159174. PubMed ID: 843571 doi:

  • 23.

    Farina D, Cescon C, Merletti R. Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern. 2002;86(6):445456. PubMed ID: 12111273 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kellis E, Galanis N, Natsis K, Kapetanos G. Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length. J Electromyogr Kinesiol, 2010;20(6):12371243. PubMed ID: 20727788 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Okada M. Effect of muscle length on surface EMG wave forms in isometric contractions. Eur J Appl Physiol Occup Physiol. 1987;56(4):482486. PubMed ID: 3622493 doi:

  • 26.

    Kouzaki M, Shinohara M, Fukunaga T. Decrease in maximal voluntary contraction by tonic vibration applied to a single synergist muscle in humans. J Appl Physiol. 2000;89(4):14201424. PubMed ID: 11007577 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Cordo PJ, Vieira C, Verschueren SM, Inglis JT, Gurfinkel V. Position sensitivity of human muscle spindles: single afferent and population representations. J Neurophysiol. 2002;87(3):11861195. PubMed ID: 11877492 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kokkorogiannis T. Somatic and intramuscular distribution of muscle spindles and their relation to muscular angiotypes. J Theor Biol. 2004;229(2):263280. PubMed ID: 15207480 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol. 2004;96(4):14861495. PubMed ID: 15016793 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Vigreux B, Cnockaert JC, Pertuzon E. Factors influencing quantified surface EMGs. Eur J Appl Physiol Occup Physiol. 1979;41(2):119129. PubMed ID: 467411 doi:

  • 31.

    Richardson JT. Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev. 2011;6(2):135147. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 637 637 122
Full Text Views 23 23 4
PDF Downloads 6 6 0