Acceleration Profiles and the Isoinertial Squatting Exercise: Is There a Direct Effect on Concentric–Eccentric Force, Power, and Neuromuscular Efficiency?

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Objective: To examine the selective influences of distinct acceleration profiles on the neuromuscular efficiency, force, and power during concentric and eccentric phases of isoinertial squatting exercise. Design: Cross-sectional study. Setting: Biomechanics laboratory of the university. Participants: A total of 38 active adults were divided according to their acceleration profiles: higher (n = 17; >2.5 m/s2) and lower acceleration group (n = 21; <2.5 m/s2). Intervention: All subjects performed squats until failure attached to an isoinertial conic pulley device monitored by surface electromyography of rectus femoris, vastus medialis, vastus lateralis, biceps femoris, and semitendinosus. Main Outcome Measures: An incremental optical encoder was used to assess maximal and mean power and force during concentric and eccentric phases. The neuromuscular efficiency was calculated using the mean force and the electromyographic linear envelope. Results: Between-group differences were observed for the maximal and mean force (P range = .001–.005), power (P = .001), and neuromuscular efficiency (P range = .001–.03) with higher significant values for the higher acceleration group in both concentric and eccentric phases. Conclusion: Distinct acceleration profiles affect the neuromuscular efficiency, force, and power during concentric and eccentric phases of isoinertial squatting exercise. To ensure immediate higher levels of power and force output without depriving the neuromuscular system, acceleration profiles higher than 2.5 m/s2 are preferable. The acceleration profiles could be an alternative to evolve the isoinertial exercise.

Campos, Ferreira, Souza, Amorim, Silveira-Nunes, and Barbosa are with the Musculoskeletal Research Group—NIME, Department of Physical Therapy, Federal University of Juiz de Fora, Juiz de Fora, Brazil. Intelangelo is with the Musculoskeletal Research Unit—UIM, Department of Physical Therapy, University Center for Assistance, Teaching and Research—CUADI, Universidad del Gran Rosario—UGR, Rosario, Argentina.

Barbosa (alexwbarbosa@hotmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Material (pdf 279 KB)
  • 1.

    Prieto-Mondragón LDP, Camargo-Rojas DA, Quiceno CA. Isoinertial technology for rehabilitation and prevention of muscle injuries of soccer players: Literature review. Rev Fac Med. 2016;64(3):543550. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Monajati A, Larumbe-Zabala E, Goss-Sampson M, Naclerio F. Injury Prevention Programs Based on Flywheel vs. Body Weight Resistance in Recreational Athletes [published online ahead of print September 28, 2018]. J Strength Cond Res. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Timón R, Ponce-González JG, González-Montesinos JL, Olcina G, Pérez-Pérez A, Castro-Piñero J. Inertial flywheel resistance training and muscle oxygen saturation. J Sports Med Phys Fitness. 2018;58(11):16181624. PubMed ID: 28738671 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hessel AL, Lindstedt SL, Nishikawa KC. Physiological mechanisms of eccentric contraction and its applications: a role for the giant titin protein. Front Physiol. 2017;8:70. PubMed ID: 28232805 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wonders J. Flywheel training in musculoskeletal rehabilitation: a clinical commentary. Int J Sports Phys Ther. 2019;14(6):9941000. PubMed ID: 31803531 doi:

  • 6.

    Nuñez Sanchez FJ, De Villarreal ES. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res. 2017;31(11):31773186. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, González-Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2017;20(10):943951. PubMed ID: 28385560 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Aragão FA, Schäfer GS, de Albuquerque CE, et al. Neuromuscular efficiency of the vastus lateralis and biceps femoris muscles in individuals with anterior cruciate ligament injuries. Rev Bras Ortop. 2015;50(2):180185. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Deschenes MR, Giles JA, McCoy RW, Volek JS, Gomez AL, Kraemer WJ. Neural factors account for strength decrements observed after short-term muscle unloading. Am J Physiol Regul Integr Comp Physiol. 2002;282(2):R578R583. PubMed ID: 11792669 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Patsika G, Kellis E, Amiridis IG. Neuromuscular efficiency during sit to stand movement in women with knee osteoarthritis. J Electromyogr Kinesiol. 2011;21(5):689694. PubMed ID: 21689947 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Chaves SF, Marques NP, Lemos e Silva R, et al. Neuromuscular efficiency of the vastus medialis obliquus and postural balance in professional soccer athletes after anterior cruciate ligament reconstruction. Muscles Ligaments Tendons J. 2012;2(2):121126. PubMed ID: 23738285

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Javier Núñez F, Suarez-Arrones LJ, Cater P, Mendez-Villanueva A. The high-pull exercise: a comparison between a versapulley flywheel device and the free weight. Int J Sports Physiol Perform. 2017;12(4):527532. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Carmona G, Guerrero M, Cussó R, et al. Muscle enzyme and fiber type-specific sarcomere protein increases in serum after inertial concentric-eccentric exercise. Scand J Med Sci Sport. 2015;25(6):e547e557. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Moras G, Vázquez-Guerrero J. Force production during squats performed with a rotational resistance device under stable versus unstable conditions. J Phys Ther Sci. 2015;27(11):34013406. PubMed ID: 26696707 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Vázquez-Guerrero J, Moras G, Baeza J, Rodríguez-Jiménez S. Force outputs during squats performed using a rotational inertia device under stable versus unstable conditions with different loads. PLoS One. 2016;11(4):e0154346. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Loturco I, Kobal R, Moraes JE, et al. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res. 2017;31(4):11271131. PubMed ID: 28328719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nuñez FJ, Hoyo M De, López AM, et al. Eccentric-concentric ratio: a key factor for defining strength training in soccer. Int J Sports Med. 2019;40(12):796802. PubMed ID: 31434138 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sanz-López F, Sánchez CB, Hita-Contreras F, Cruz-Diaz D, Martínez-Amat A. Ultrasound changes in Achilles tendon and gastrocnemius medialis muscle on squat eccentric overload and running performance. J Strength Cond Res. 2016;30(7):20102018. PubMed ID: 26677829 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Coombs R, Garbutt G. Developments in the use of the hamstring/quadriceps ratio for the assessment of muscle balance. J Sport Sci Med. 2002;1(3):5662. http://www.jssm.org. Accessed September 15, 2020.

    • Search Google Scholar
    • Export Citation
  • 20.

    Vriend I, Gouttebarge V, Finch CF, van Mechelen W, Verhagen EALM. Intervention strategies used in sport injury prevention studies: a systematic review identifying studies applying the Haddon matrix. Sport Med. 2017;47(10):20272043. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):13811395. PubMed ID: 12900694 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Loturco I, Pereira LA, Freitas TT, et al. Maximum acceleration performance of professional soccer players in linear sprints: is there a direct connection with change-of-direction ability? PLoS One. 2019;14(5):e0216806. PubMed ID: 31086386 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Watanabe K, Akima H. Validity of surface electromyography for vastus intermedius muscle assessed by needle electromyography. J Neurosci Methods. 2011;198(2):332335. PubMed ID: 21463655 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cavanaugh MT, Aboodarda SJ, Behm DG. Intrasession and intersession reliability of quadriceps’ and hamstrings’ electromyography during a standardized hurdle jump test with single leg landing. J Strength Cond Res. 2017;31(6):16011609. PubMed ID: 28538311 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Meylan CMPP, Cronin JB, Oliver JL, Hughes MMGG, Jidovtseff B, Pinder S. The reliability of isoinertial force–velocity–power profiling and maximal strength assessment in youth. Sport Biomech. 2015;14(1):6880. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Drinkwater EJ, Galna B, Mckenna MJ, Hunt PH, Pyne DB. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue. J Strength Cond Res. 2007;21(2):510517. PubMed ID: 17530976 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Noble EB, Pilarski JM, Vora HK, Zuniga JM, Malek MH. Log-transformed electromyography amplitude-power output relationship: single-leg knee-extensor versus single-leg cycle ergometry. J strength Cond Res. 2019;33(5):13111319. PubMed ID: 31033774 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Neugebauer JM, Lafiandra M. Predicting ground reaction force from a hip-borne accelerometer during load carriage. Med Sci Sports Exerc. 2018;50(11):23692374. PubMed ID: 29889819 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tesch PA, Fernandez-Gonzalo R, Lundberg TR. Clinical applications of iso-inertial, eccentric-overload (YoYo) resistance exercise. Front Physiol. 2017;8:241. PubMed ID: 28496410 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    del Rosario MB, Redmond SJ, Lovell NH. Tracking the evolution of smartphone sensing for monitoring human movement. Sensors. 2015;15(8):1890118933. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kos A, Tomažič S, Umek A. Suitability of smartphone inertial sensors for real-time biofeedback applications. Sensors. 2016;16(3):301. doi:

  • 33.

    Rahmani A, Samozino P, Morin JB, Morel B. A simple method for assessing upper-limb force–velocity profile in bench press. Int J Sports Physiol Perform. 2018;13(2):200207. PubMed ID: 28605252 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Jiménez-Reyes P, Samozino P, Cuadrado-Peñafiel V, Conceição F, González-Badillo JJ, Morin JB. Effect of countermovement on power–force–velocity profile. Eur J Appl Physiol. 2014;114(11):22812288. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505510. PubMed ID: 24227123 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Suchomel TJ, Comfort P, Lake JP. Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength Cond J. 2017;39(1):1020. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Carroll KM, Wagle JP, Sato K, et al. Characterising overload in inertial flywheel devices for use in exercise training. Sport Biomech. 2019;18(4):390401. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Illera-Domínguez V, Nuell S, Carmona G, et al. Early functional and morphological muscle adaptations during short-term inertial-squat training. Front Physiol. 2018;9:1265. PubMed ID: 30246805 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Seynnes OR, De Boer M, Narici M V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368373. PubMed ID: 17053104 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Norrbrand L, Pozzo M, Tesch PA. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur J Appl Physiol. 2010;110(5):9971005. PubMed ID: 20676897 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kibler WB, Ellenbecker T, Sciascia A. Neuromuscular adaptations in shoulder function and dysfunction. In: Hainline B, Stern RA, eds. Handbook of Clinical Neurology (pp. 385–400); 2018. Elsevier. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Cuenca-Fernández F, López-Contreras G, Arellano R. Effect on swimming start performance of two types of activation protocols: Lunge and YoYo squat. J Strength Cond Res. 2015;29(3):647655. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Mendez-Villanueva A, Suarez-Arrones L, Rodas G, et al. MRI-based regional muscle use during hamstring strengthening exercises in elite soccer players. PLoS One. 2016;11(9):e0161356. PubMed ID: 27583444 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Chaconas EJ, Kolber MJ, Hanney WJ, Daugherty ML, Wilson SH, Sheets C. Shoulder external rotator eccentric training versus general shoulder exercise for subacromial pain syndrome: a randomized controlled trial. Int J Sports Phys Ther. 2017;12(7):11211133. PubMed ID: 29234564 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Tyler TF, Nicholas SJ, Schmitt BM, Mullaney M, Hogan DE. Clinical outcomes of the addition of eccentrics for rehabilitation of previously failed treatments of golfers elbow. Int J Sports Phys Ther. 2014;9(3):365370. PubMed ID: 24944855

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes: a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sport Med. 2013;43(4):267286. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Blanchard S, Glasgow P. A theoretical model for exercise progressions as part of a complex rehabilitation programme design. Br J Sports Med. 2019;53(3):139140. PubMed ID: 28756390 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Blanchard S, Glasgow P. A theoretical model to describe progressions and regressions for exercise rehabilitation. Phys Ther Sport. 2014;15(3):131135. PubMed ID: 24913914 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Lorenz D, Morrison S. Current concepts in periodization of strength and conditioning for the sports physical therapist. Int J Sports Phys Ther. 2015;10(6):734747. PubMed ID: 26618056

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Gokeler A, Bisschop M, Benjaminse A, Myer GD, Eppinga P, Otten E. Quadriceps function following ACL reconstruction and rehabilitation: implications for optimisation of current practices. Knee Surgery, Sport Traumatol Arthrosc. 2014;22(5):11631174. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 870 870 441
Full Text Views 11 11 4
PDF Downloads 6 6 3