Acute Effect of Ankle Kinesio Taping on Lower-Limb Biomechanics During Single-Legged Drop Landing

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Chronic ankle instability is documented to be followed by a recurrence of giving away episodes due to impairments in mechanical support. The application of ankle Kinesiotaping (KT) as a therapeutic intervention has been increasingly raised among athletes and physiotherapists. Objectives: This study aimed to investigate the impacts of ankle KT on the lower-limb kinematics, kinetics, dynamic balance, and muscle activity of college athletes with chronic ankle instability. Design: A crossover study design. Participants: Twenty-eight college athletes with chronic ankle sprain (11 females and 17 males, 23.46 [2.65] y, 175.36 [11.49] cm, 70.12 [14.11] kg) participated in this study. Setting: The participants executed 3 single-leg drop landings under nontaped and ankle Kinesio-taped conditions. Ankle, knee, and hip kinematics, kinetics, and dynamic balance status and the lateral gastrocnemius, medial gastrocnemius, tibialis anterior, and peroneus longus muscle activity were recorded and analyzed. Results: The application of ankle KT decreased ankle joint range of motion (P = .039) and angular velocities (P = .044) in the sagittal plane, ground reaction force rate of loading (P = .019), and mediolateral time to stability (P = .035). The lateral gastrocnemius (0.002) and peroneus longus (0.046) activity amplitudes also experienced a significant decrease after initial ground contact when the participants’ ankles were taped, while the application of ankle KT resulted in an increase in the peroneus longus (0.014) activity amplitudes before initial ground contact. Conclusions: Ankle lateral supports provided by KT potentially decreases mechanical stresses applied to the lower limbs, aids in dynamic balance, and lowers calf muscle energy consumption; therefore, it could be offered as a suitable supportive means for acute usage in athletes with chronic ankle instability.

Sarvestan, Kovačíková, and Svoboda are with the Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic. Needle is with the Department of Health and Exercise Science, Appalachian State University, Boone, NC, USA. Ataabadi and Abbasi are with the Department of Biomechanics and Sport Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran.

Sarvestan (javad.sarvestan01@upol.cz) is corresponding author.
  • 1.

    Kaminski TW, Needle AR, Delahunt E. Prevention of lateral ankle sprains. J Athl Train. 2019;54(6):650661. PubMed ID: 31116041 doi:

  • 2.

    Herzog MM, Kerr ZY, Marshall SW, Wikstrom EA. Epidemiology of ankle sprains and chronic ankle instability. J Athl Train. 2019;54(6):603610. PubMed ID: 31135209 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wikstrom E, Song K, Tennant J, Dederer K, Paranjape C, Pietrosimone B. T1ρ MRI of the talar articular cartilage is increased in those with chronic ankle instability. Osteoarthritis Cartilage. 2019;27(4):646649. PubMed ID: 30634032 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Houston MN, Hoch JM, Hoch MC. Patient-reported outcome measures in individuals with chronic ankle instability: a systematic review. J Athl Train. 2015;50(10):10191033. PubMed ID: 26332028 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):12711288. PubMed ID: 28005191 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Theisen A, Day J. Chronic ankle instability leads to lower extremity kinematic changes during landing tasks: a systematic review. Int J Exerc Sci. 2019;12(1):2433. PubMed ID: 30761190

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Moisan G, Descarreaux M, Cantin V. Effects of chronic ankle instability on kinetics, kinematics and muscle activity during walking and running: a systematic review. Gait Posture. 2017;52:381399. PubMed ID: 28063387 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train. 2019;54(6):572588. PubMed ID: 31162943 doi:

  • 9.

    Needle AR, Kaminski TW, Baumeister J, Higginson JS, Farquhar WB, Swanik CB. The relationship between joint stiffness and muscle activity differs in unstable ankles and copers. J Sport Rehabil. 2017;26(1):1525. PubMed ID: 27632852 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chinn L, Dicharry J, Hertel J. Ankle kinematics of individuals with chronic ankle instability while walking and jogging on a treadmill in shoes. Phys Ther Sport. 2013;14(4):232239. PubMed ID: 23623243 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wikstrom EA, Fournier KA, McKeon PO. Postural control differs between those with and without chronic ankle instability. Gait Posture. 2010;32(1):8286. PubMed ID: 20418101 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ross SE, Guskiewicz KM. Examination of static and dynamic postural stability in individuals with functionally stable and unstable ankles. Clin J Sport Med. 2004;14(6):332338. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Halim-Kertanegara S, Raymond J, Hiller CE, Kilbreath SL, Refshauge KM. The effect of ankle taping on functional performance in participants with functional ankle instability. Phys Ther Sport. 2017;23:162167. PubMed ID: 27262625 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Williams S, Whatman C, Huma PA, Sheerin K. Kinesio taping in treatment and prevention of sports injuries: a meta-analysis of the evidence for its effectiveness. Sports Med. 2012;42(2):153164. PubMed ID: 22124445 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fayson SD, Needle AR, Kaminski TW. The effects of ankle Kinesio taping on ankle stiffness and dynamic balance. Res Sports Med. 2013;21(3):204216. PubMed ID: 23777376 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Fayson SD, Needle AR, Kaminski TW. The effect of ankle Kinesio tape on ankle muscle activity during a drop landing. J Sport Rehabil. 2015;24(4):391397. PubMed ID: 25310202 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Eom S-Y, Lee W-J, Lee J-I, Lee H-Y, Chung E-J. The effect of ankle Kinesio taping on range of motion and agility during exercise in university students. Phys Ther Rehabil Sci. 2014;3(1):6368. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kuni B, Mussler J, Kalkum E, Schmitt H, Wolf SI. Effect of kinesiotaping, non-elastic taping and bracing on segmental foot kinematics during drop landing in healthy subjects and subjects with chronic ankle instability. Physiotherapy. 2016;102(3):287293. PubMed ID: 26422550 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Griebert MC, Needle AR, McConnell J, Kaminski TW. Lower-leg Kinesio tape reduces rate of loading in participants with medial tibial stress syndrome. Phys Ther Sport. 2016;18:6267. PubMed ID: 24726684 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Briem K, Eythorsdottir H, Magnusdottir RG, Palmarsson R, Runarsdottir T, Sveinsson T. Effects of Kinesio tape compared with nonelastic sports tape and the untaped ankle during a sudden inversion perturbation in male athletes. J Orthop Sport Phys Ther. 2011;41(5):328335. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Correia C, Lopes S, Gonçalves R, et al. Kinesiology taping does not change fibularis longus latency time and postural sway. J Bodyw Mov Ther. 2016;20(1):132138. PubMed ID: 26891648 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Shields CA, Needle AR, Rose WC, Swanik CB, Kaminski TW. Effect of elastic taping on postural control deficits in subjects with healthy ankles, copers, and individuals with functional ankle instability. Foot Ankle Int. 2013;34(10):14271435. PubMed ID: 23720530 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gök H, Atar , Ateş C, Tur BS. Does kinesiotaping affect standing balance in healthy individuals? A pilot, double-blind, randomized-controlled study. Turk J Phys Med Rehabil. 2019;65(4):327. PubMed ID: 31893269 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jackson K, Simon JE, Docherty CL. Extended use of kinesiology tape and balance in participants with chronic ankle instability. J Athl Train. 2016;51(1):1621. PubMed ID: 26752273 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kodesh E, Dar G. The effect of kinesiotape on dynamic balance following muscle fatigue in individuals with chronic ankle instability. Res Sports Med. 2015;23(4):367378. PubMed ID: 26279271 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Shin YJ, Kim MK. Immediate effect of ankle balance taping on dynamic and static balance of soccer players with acute ankle sprain. J Phys Ther Sci. 2017;29(4):622624. PubMed ID: 28533597 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Miller HN, Rice PE, Felpel ZJ, Stirling AM, Bengtson EN, Needle AR. Influence of mirror feedback and ankle joint laxity on dynamic balance in trained ballet dancers. J Dance Med Sci. 2018;22(4):184191. PubMed ID: 30477607 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. Br J Sports Med. 2014;48(13):10141018. PubMed ID: 24255768 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Delagi EF, Iazetti J, Perotto AO, Morrison D. Anatomical Guide for the Electromyographyer: The Limbs and Trunk. 5th ed. Springfield, IL: Charles C. Thomas, LTD; 2011.

    • Search Google Scholar
    • Export Citation
  • 30.

    Talib I, Sundaraj K, Lam CK, Hussain J, Ali MA. A review on crosstalk in myographic signals. Eur J Appl Physiol. 2019;119(1):928. PubMed ID: 30242464 doi:

  • 31.

    Sarvestan J, Svoboda Z. Acute effect of ankle Kinesio and athletic taping on ankle range of motion during various agility tests in athletes with chronic ankle sprain . J Sport Rehabil. 29(5); 527535. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Sarvestan J, Ataabadi PA, Svoboda Z, Kovačikova Z, Needle AR. The effect of ankle Kinesio taping on ankle joint biomechanics during unilateral balance status among collegiate athletes with chronic ankle sprain. Phys Ther in Sport. 2020;45:161167. PubMed ID: 32781269 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Sarvestan J, Alaei F, Kazemi NS, Khial HP, Shirzad E, Svoboda Z. Agility profile in collegiate athletes with chronic ankle sprain: the effect of Athletic and Kinesio taping among both genders. Sport Sci Health. 2018;14(2):407414. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Kase K, Wallis J, Kase T. Clinical Therapeutic Applications of the Kinesio Taping Methods. 3rd ed. Albuquerque, NM: Kinesio Taping Association; 2016.

    • Search Google Scholar
    • Export Citation
  • 35.

    Sarvestan J, Svoboda Z, Linduška P. Kinematic differences between successful and faulty spikes in young volleyball players. J Sports Sci. 2020;38(20):23142320. PubMed ID: 32965184 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kainz H, Graham D, Edwards J, et al. Reliability of four models for clinical gait analysis. Gait Posture. 2017;54:325331. PubMed ID: 28411552 doi:

  • 37.

    Wu G, Van der Helm FC, Veeger HD, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981992. PubMed ID: 15844264 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sarvestan J, Svoboda Z, Baeyens J-P, Serrien B. Whole body coordination patterning in volleyball spikes under various task constraints: exploratory cluster analysis based on self-organising maps [published online ahead of print August 3, 2020]. Sports Biomech. 115. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Fuchs PX, Fusco A, Bell JW, von Duvillard SP, Cortis C, Wagner H. Movement characteristics of volleyball spike jump performance in females. J Sci Med Sport. 2019;22(7):833837. PubMed ID: 30630741 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Robertson GE, Caldwell GE, Hamill J, Kamen G, Whittlesey S. Research Methods in Biomechanics. Champaign, IL: Human kinetics; 2013.

  • 41.

    Yeow C, Lee P, Goh J. Sagittal knee joint kinematics and energetics in response to different landing heights and techniques. Knee. 2010;17(2):127131. PubMed ID: 19720537 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. J Athl Train. 2003;38(1):18. PubMed ID: 12937467

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Farina D, Lucas M-F, Doncarli C. Optimized wavelets for blind separation of nonstationary surface myoelectric signals. IEEE Trans Biomed Eng. 2007;55(1):7886. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Zazulak BT, Ponce PL, Straub SJ, Medvecky MJ, Avedisian L, Hewett TE. Gender comparison of hip muscle activity during single-leg landing. J Orthop Sports Phys Ther. 2005;35(5):292299. PubMed ID: 15966540 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Urdan TC. Statistics in Plain English. New York, NY: Taylor & Francis Group; 2016.

  • 46.

    Needle AR, Baumeister J, Kaminski TW, Higginson JS, Farquhar WB, Swanik CB. Neuromechanical coupling in the regulation of muscle tone and joint stiffness. Scand J Med Sci Sports. 2014;24(5):737748. PubMed ID: 25371932 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Bigouette J, Simon J, Liu K, Docherty CL. Altered vertical ground reaction forces in participants with chronic ankle instability while running. J Athl Train. 2016;51(9):682687. PubMed ID: 27813684 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    DeJong AF, Koldenhoven RM, Hertel J. Proximal adaptations in chronic ankle instability: systematic review and meta-analysis. Med Sci Sports Exerc. 2020;52(7):15631575. PubMed ID: 31977639 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 755 755 134
Full Text Views 15 15 3
PDF Downloads 9 9 1