Clinical Changes in Cervical Neuromuscular Control Following Subconcussive Impacts

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Increased injury rates following concussive injury have been attributed to decreased neuromuscular coordination frequently documented following a concussion. However, altered integration between the vestibular system and oculomotor pathways following impacts at subconcussive thresholds implicate all sports-related impacts not just those at a concussive threshold in future musculoskeletal injury. While, several studies have explored the utility of vestibular and oculomotor clinical testing to detect altered neuromuscular control and then correlated those alterations to future injury risk, no research has explored the use of cervical clinical tests in the same capacity. Outcome Measures: Cervical joint position error test, Neck Disability Index and head acceleration. Interventions: Soccer headers, fatigue protocol, soccer headers + fatigue. Objective: To explore the clinical utility of a novel clinical approach to measuring changes in cervical neuromuscular control following subconcussive impacts in a controlled lab environment. Participants: 40 current female colligate club soccer athletes were recruited. Inclusion criteria included between the age of 18 and 25 and a minimum of 4-year soccer heading experience. Setting: Laboratory. Design: A repeated-measures design with 4 groups was utilized to test the hypothesis. Results: A 65%, 54%, and 49% increased error was observed following the soccer heading, fatigue only, and soccer heading + fatigue interventions, respectively. Meanwhile, the controls saw a 6% decrease in neck position error. Concussion: While, cervical joint position error testing was sensitive to decreased neuromuscular coordination following soccer heading, it was not specific enough to rule out an exercise effect in the absence of subconcussive impacts. Further research is warranted to explore the clinical utility and specificity of cervical joint position error testing to measured alterations in supraspinal processing following subconcussive impacts, and how these alterations may lead to decreased coordination and movement of the body during sports-related task.

Cheever is with the Department of Kinesiology, College for Health, Community and Policy, The University of Texas at San Antonio, San Antonio, TX, USA. Howard is with the Department of Public Health, College for Health, Community and Policy, The University of Texas at San Antonio, San Antonio, TX, USA. Kawata is with the Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA; and the Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, IN, USA.

Cheever (kelly.cheever@utsa.edu) is corresponding author.
  • 1.

    Mainwaring L, Pennock KMF, Mylabathula S, et al. Subconcussive head impacts in sport: a systematic review of the evidence. Int J Psychophysiol. 2018;132:3954. PubMed ID: 29402530 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Meehan W, Mannix R, Zafonte R, et al. Chronic traumatic encephalopathy and athletes. Neurology. 2015;85(17):15041511. PubMed ID: 26253448 doi:

  • 3.

    Van Jones SA, Breakey RW,Evans PJ. Heading in football, long-term cognitive decline and dementia: evidence from screening retired professional footballers. Br J Sports Med. 2014;48(2):159161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Witol AD,Webbe FM. Soccer heading frequency predicts neuropsychological deficits. Arch Clin Neuropsycol. 2003;18(4):397417. doi:

  • 5.

    Mccuen E, Svaldi D, Breedlove K, et al. Collegiate women’s soccer players suffer greater cumulative head impacts than their higher school counterparts. J Biomech. 2015;48(13):37203723. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chrisman SPD, Mac Donald CL, Friedman S, et al. Head impact exposure during a weekend youth soccer tournament. J Child Neurol. 2016;31(8):971978. PubMed ID: 26951540 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Press JN,Rowson S. Quantifying head impact exposure in collegiate women’s soccer. Clin J Sport Med. 2017;27(2):104110. PubMed ID: 26978008 doi:

  • 8.

    Sortland O, Tysvaer AT,Storli OV. Changes in the cervical spine in association football players. Br J Sports Med. 1982;16(2):8084. PubMed ID: 7104560 doi:

  • 9.

    Kartal A, Yıldıran İ, Şenköylü A, et al. Soccer causes degenerative changes in the cervical spine. Eur Spine J. 2004;13(1):7682. PubMed ID: 14648304 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Panjabi MM, Cholewicki J, Nibu K, et al. Critical load of the human cervical spine: an in vitro experimental study. Clin Biomech. 1998;13(1):1117. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Mehnert MJ, Agesen T, Malanga GA. “Heading” and neck injuries in soccer: a review of biomechanics and potential long-term effects. Pain Physician. 2005;8(4):391397. PubMed ID: 16850063

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Berge Jrm, Marque B, Vital J-M, et al. Age-related changes in the cervical spines of front-line rugby players. Am J Sports Med. 1999;27(4):422429. PubMed ID: 10424210 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Castinel BH, Adam P, Milburn PD, et al. Epidemiology of cervical spine abnormalities in asymptomatic adult professional rugby union players using static and dynamic MRI protocols: 2002 to 2006. Br J Sports Med. 2010;44(3):194199. PubMed ID: 18385195 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Huber BR, Alosco ML, Stein TD, et al. Potential long-term consequences of concussive and subconcussive injury. Phys Med Rehabil Clin N Am. 2016;27(2):503511. PubMed ID: 27154859 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hwang S, Ma L, Kawata K, et al. Vestibular dysfunction after subconcussive head impact. J Neurotrauma. 2017;34(1):815. PubMed ID: 26885560 doi:

  • 16.

    Bevilacqua ZW, Huibregtse ME,Kawata K. In vivo protocol of controlled subconcussive head impacts for the validation of field study data. J Vis Exp. 2019;146:e59381.

    • Search Google Scholar
    • Export Citation
  • 17.

    Haran FJ, Tierney R, Wright WG, et al. Acute changes in postural control after soccer heading. Int J Sports Med. 2013;34(4):350354. PubMed ID: 23175178

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kawata K, Rubin LH, Takahagi M, et al. Subconcussive impact-dependent increase in plasma S100 levels in collegiate football players. J Neurotrauma. 2017;34(14):22542260. PubMed ID: 28181857 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kawata K, Rubin LH, Lee HL, et al. Association of football subconcussive head impacts with ocular near point of convergence. JAMA Ophthalmol. 2016;134(7):763769. PubMed ID: 27257799 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Armstrong B, McNair P,Taylor D. Head and neck position sense. Sports Med. 2008;38(2):101117. PubMed ID: 18201114 doi:

  • 21.

    Marshall CM, Vernon H, Leddy JJ, et al. The role of the cervical spine in post-concussion syndrome. Phys Sportsmed. 2015;43(3):274284. PubMed ID: 26138797 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schneider KJ, Meeuwisse WH, Nettel-Aguirre A, et al. Cervicovestibular rehabilitation in sport-related concussion: a randomised controlled trial. Br J Sports Med. 2014;48(17):12941298. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lark SD,McCarthy PW. Cervical range of motion and proprioception in rugby players versus non-rugby players. J Sports Sci. 2007;25(8):887894. PubMed ID: 17474042 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hides JA, Smith MMF, Mendis MD, et al. A prospective investigation of changes in the sensorimotor system following sports concussion. An exploratory study. Musculoskelet Sci Pract. 2017;29:719. PubMed ID: 28259770 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hides JA, Smith MMF, Mendis MD, et al. Self-reported concussion history and sensorimotor tests predict head/neck injuries. Med Sci Sports Exerc. 2017;49(12):23852393. PubMed ID: 28708701 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Caccese JB, Best C, Lamond LC, et al. Effects of repetitive head impacts on a concussion assessment battery. Med Sci Sports Exerc. 2019;51(7):13551361. PubMed ID: 30649104 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Howell DR, Wilson JC, Brilliant AN, et al. Objective clinical tests of dual-task dynamic postural control in youth athletes with concussion. J Sci Med Sport. 2019;22(5):521525. PubMed ID: 30509865 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Talarico M, Ballance C, Boucher L, et al. Effect of a dynamic dual-task paradigm and concussion history on motor and cognitive performance. Med Sci Sports Exerc. 2019;51(6):471471. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Howell DR, Buckley TA, Berkstresser B, et al. Identification of postconcussion dual-task gait abnormalities using normative reference values. J Appl Biomech. 2019;35(4):290296. PubMed ID: 31141425 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Maclean LM, McSkimming P,McMillan T. The association between dual-task walking and counting responses and cognitive function and disability after severe head injury: a preliminary study [published online ahead of print Janurary 28, 2020]. Neuropsychol Rehabil Int J, 113. PubMed ID: 28337197 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Benedict SE, Hinshaw JW, Byron-Fields R, et al. Effects of fatigue on the BTrackS balance test for concussion management. Int J Athl Ther Train. 2017;22(4):2328. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Fox ZG, Mihalik JP, Blackburn JT, et al. Return of postural control to baseline after anaerobic and aerobic exercise protocols. J Athl Train. 2008;43(5):456463. PubMed ID: 18833307 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Combs PR, Ford CB, Campbell KR, et al. Influence of self-reported fatigue and sex on baseline concussion assessment scores. Orthop J Sports Med. 2019;7(1):2325967118817515. PubMed ID: 30643836 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Roren A, Mayoux-Benhamou M, Fayad F, et al. Comparison of visual and ultrasound based techniques to measure head repositioning in healthy and neck-pain subjects. Man Ther. 2009;14(3):270277. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Revel M, Andredeshays C,Minguet M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch Phys Med Rehabil. 1991;72(5):288291. PubMed ID: 2009044

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Laser T. Trackerlaser. 2019. https://www.trackerlaser.com/downloads. Accessed January 1, 2019.

    • Export Citation
  • 37.

    Strimpakos N, Sakellari V, Gioftsos G, et al. Cervical joint position sense: an intra- and inter-examiner reliability study. Gait Posture. 2006;23(1):2231. PubMed ID: 16311191 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wilkins JC, McLeod TCV, Perrin DH, et al. Performance on the balance error scoring system decreases after fatigue. J Athl Train. 2004;39(2):156161. PubMed ID: 15173867

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Lark SD,McCarthy PW. The effects of a single game of rugby on active cervical range of motion. J Sports Sci. 2009;27(5):491497. PubMed ID: 19204848 doi:

  • 40.

    Jull G, Falla D, Treleaven J, et al. Retraining cervical joint position sense: the effect of two exercise regimes. J Orthop Res. 2007;25(3):404412. PubMed ID: 17143898 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hammerle M, Swan AA, Nelson JT, et al. Retrospective review: effectiveness of cervical proprioception retraining for dizziness after mild traumatic brain injury in a military population with abnormal cervical proprioception. J Manipulative Physiol Ther. 2019;42(6):399406. PubMed ID: 31362829 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Teramoto M, Cushman DM, Cross CL, et al. Game schedules and rate of concussions in the national football league. Orthop J Sports Med. 2017;5(11):232596711774086. PubMed ID: 29226165 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Nagle K, Johnson B, Brou L, et al. Timing of lower extremity injuries in competition and practice in high school sports. Sports Health. 2017;9(3):238246. PubMed ID: 28146414 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Jones CM, Griffiths PC,Mellalieu SD. Training load and fatigue marker associations with injury and illness: a systematic review of longitudinal studies. Sports Med. 2017;47(5):943974. PubMed ID: 27677917 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Qu XD, Xie YX, Hu XY, et al. Effects of fatigue on balance recovery from unexpected trips. Hum Factors. 2020;62(6):919927. PubMed ID: 31385721 doi:

  • 46.

    Jatka J, Cheever KM, Mansell JL, et al. The effect of an interval fatigue protocol on vestibular/ocular motor screening (VOMS) performance. Brain Inj. 2020;34(1):110114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Lindsey J, Cheever KM, Mansell JL, et al. Effect of fatigue on ocular motor assessments. Athl Train Sports Health Care. 2017;9(4):177183. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Pinsault N,Vuillerme N. Degradation of cervical joint position sense following muscular fatigue in humans. Spine. 2010;35(3):294297. PubMed ID: 20075783 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Broglio SP, Martini D, Kasper L, et al. Estimation of head impact exposure in high school football implications for regulating contact practices. Am J Sports Med. 2013;41(12):28772884. PubMed ID: 24001576 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Kerr ZY, Littleton AC, Cox LM, et al. Estimating contact exposure in football using the head impact exposure estimate. J Neurotra. 2015;32(14):10831089. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Wiese BW, Boone JK, Mattacola CG, et al. Determination of the functional movement screen to predict musculoskeletal injury in intercollegiate athletics. Athl Train Sports Health Care. 2014;6(4):161. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Herman DC, Jones D, Harrison A, et al. Concussion may increase the risk of subsequent lower extremity musculoskeletal injury in collegiate athletes. Sports Med. 2017;47(5):10031010. PubMed ID: 27544666 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 143 143 34
Full Text Views 18 18 12
PDF Downloads 12 12 6