Concurrent Continuous Versus Bandwidth Visual Feedback With Varying Body Representation for the 2-Legged Squat Exercise

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Continuous visual feedback (VF) can improve abilities to achieve desired movements and maximize rehabilitation outcomes by displaying actual versus target body positions in real time. Bandwidth VF reduces the reliance on feedback by displaying movement cues only when performance errors exceed specified thresholds. As such, bandwidth VF may better train independent movement abilities through greater development of intrinsic body control. In this study, continuous and bandwidth VF were investigated across modes of display (abstract and representative) that differed in body-discernibility. Objective: To compare the performance of the 2-legged squat during training with concurrent feedback (real-time VF) and short-term retention (immediately after training, VF removed). Design: Cross-sectional. Setting: University research laboratory. Participants: Eighteen healthy individuals. Methods: Marker-based motion capture displayed real-time position. Main Outcome Measures: Four VF cases (continuous–abstract, bandwidth–abstract, continuous–representative, and bandwidth–representative) were evaluated for accuracy and consistency to a target trajectory and target depth. Results: During training, both continuous VF cases showed significantly (P < .05) higher accuracy and consistency to the target trajectory compared with both bandwidth VF cases. Bandwidth VF resulted in greater potential learning (retention performance relative to a training baseline) compared with continuous–abstract. Conclusions: Continuous–representative may offer unique performance benefits in both training and retention of multisegment movement tasks. Bandwidth VF showed greater potential for learning. For long-term learning, an optimal VF paradigm should consider continuous–representative with bandwidth features.

The authors are with the Movement Control Rehabilitation (MOCORE) Laboratory, Stevens Institute of Technology, Hoboken, NJ, USA; and the Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.

Nataraj (rnataraj@stevens.edu) is the corresponding author.
  • 1.

    Cotter JA, Chaudhari AM, Jamison ST, Devor ST. Knee joint kinetics in relation to commonly prescribed squat loads and depths. J Strength Cond Res. 2013;27(7):17651774. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Escamilla RF, Fleisig GS, Zheng N, et al. Effects of technique variations on knee biomechanics during the squat and leg press. Med Sci Sports Exerc. 2001;33(9):15521566. PubMed ID: 11528346 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Clark DR, Lambert MI, Hunter AM. Muscle activation in the loaded free barbell squat: a brief review. J Strength Cond Res. 2012;26(4):11691178. PubMed ID: 22373894 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gorsuch J, Long J, Miller K, et al. The effect of squat depth on multiarticular muscle activation in collegiate cross-country runners. J Strength Cond Res. 2013;27(9):26192625. PubMed ID: 23254544 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Abujaber S, Pozzi F, Zeni J. Influence of weight bearing visual feedback on movement symmetry during sit to stand task. Clin Biomech. 2017;47:110116. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Jaberzadeh S, Yeo D, Zoghi M. The effect of altering knee position and squat depth on VMO : VL EMG ratio during squat exercises. Physiother Res Int. 2016;21(3):164173. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Yoon JY, Kang MH, Oh JS. Effects of visual biofeedback using a laser beam on the EMG ratio of the medial and lateral vasti muscles and kinematics of hip and knee joints during a squat exercise. J Phys Ther Sci. 2011;23(4):559563. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Benjaminse A. Motor learning in ACL injury prevention. 2015. http://www.rug.nl/research/portal/publications/motor-learning-in-acl-injury-prevention(4b792620-30f6-4b27-a5da-22c1afa909af).html. Accessed July 31, 2017.

    • Search Google Scholar
    • Export Citation
  • 9.

    Gokeler A, Bisschop M, Benjaminse A, Myer GD, Eppinga P, Otten E. Quadriceps function following ACL reconstruction and rehabilitation: implications for optimisation of current practices. Knee Surg Sports Traumatol Arthrosc. 2014;22(5):11631174. PubMed ID: 23812438 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Giggins OM, Persson UM, Caulfield B. Biofeedback in rehabilitation. J Neuroeng Rehabil. 2013;10:60. doi:

  • 11.

    Sewall LP, Reeve TG, Day RA. Effect of concurrent visual feedback on acquisition of a weightlifting skill. Percept Mot Skills. 1988;67(3):715718. PubMed ID: 3226820 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20(1):2153. PubMed ID: 23132605 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Al-Amri M, Davies J, Adamson P, Button K, Roos P, Van Deursen RWM. Augmented feedback approach to double-leg squat training for patients with knee osteoarthritis: a preliminary study. Presented at: 11th International Conference on Disability, Virtual Reality & Associated Technologies, Los Angeles, California, USA; 2016:251257. http://orca.cf.ac.uk/94978/. Accessed July 6, 2017.

    • Search Google Scholar
    • Export Citation
  • 14.

    Hwangbo PN. The effects of squatting with visual feedback on the muscle activation of the vastus medialis oblique and the vastus lateralis in young adults with an increased quadriceps angle. J Phys Ther Sci. 2015;27(5):15071510. PubMed ID: 26157251 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Park JH, Shea CH, Wright DL. Reduced-frequency concurrent and terminal feedback: a test of the guidance hypothesis. J Mot Behav. 2000;32(3):287296. PubMed ID: 10975276 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Blandin Y, Toussaint L, Shea CH. Specificity of practice: interaction between concurrent sensory information and terminal feedback. J Exp Psychol Learn Mem Cogn. 2008;34(4):9941000. PubMed ID: 18605884 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Salmoni AW, Schmidt RA, Walter CB. Knowledge of results and motor learning: a review and critical reappraisal. Psychol Bull. 1984;95(3):355386. PubMed ID: 6399752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Schmidt RA, Young DE, Swinnen S, Shapiro DC. Summary knowledge of results for skill acquisition: support for the guidance hypothesis. J Exp Psychol Learn Mem Cogn. 1989;15(2):352359. PubMed ID: 2522520 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fitts PM, Posner MI. Human Performance. Oxford, UK: Brooks/Cole; 1967.

  • 20.

    Sadowski J, Mastalerz A, Niznikowski T. Benefits of bandwidth feedback in learning a complex gymnastic skill. J Hum Kinet. 2013;37(1):183193. doi:

  • 21.

    Wulf G, Shea CH, Matschiner S. Frequent feedback enhances complex motor skill learning. J Mot Behav. 1998;30(2):180192. PubMed ID: 20037033 doi:

  • 22.

    Wulf G, Shea CH. Principles derived from the study of simple skills do not generalize to complex skill learning. Psychon Bull Rev. 2002;9(2):185211. PubMed ID: 12120783 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Radhakrishnan SM, Hatzitaki V, Vogiannou A, Tzovaras D. The role of visual cues in the acquisition and transfer of a voluntary postural sway task. Gait Posture. 2010;32(4):650655. PubMed ID: 20934876 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Schiffman JM, Luchies CW, Piscitelle L, Hasselquist L, Gregorczyk KN. Discrete bandwidth visual feedback increases structure of output as compared to continuous visual feedback in isometric force control tasks. Clin Biomech. 2006;21(10):10421050. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Maslovat D, Brunke KM, Chua R, Franks IM. Feedback effects on learning a novel bimanual coordination pattern: support for the guidance hypothesis. J Mot Behav. 2009;41(1):4554. PubMed ID: 19073470 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Schmidt RA, Wulf G. Continuous concurrent feedback degrades skill learning: implications for training and simulation. Hum Factors. 1997;39(4):509525. PubMed ID: 9473972 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Young DE, Schmidt RA. Augmented kinematic feedback for motor learning. J Mot Behav. 1992;24(3):261273. PubMed ID: 12736131 doi:

  • 28.

    Huet M, Camachon C, Fernandez L, Jacobs DM, Montagne G. Self-controlled concurrent feedback and the education of attention towards perceptual invariants. Hum Mov Sci. 2009;28(4):450467. PubMed ID: 19394099 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Aiken CA, Fairbrother JT, Post PG. The effects of self-controlled video feedback on the learning of the basketball set shot. Front Psychol. 2012;3:338. doi:

  • 30.

    Davis J. Effects of self-controlled feedback on the squat. 2009. https://dspace.sunyconnect.suny.edu/handle/1951/48141. Accessed July 25, 2017.

    • Search Google Scholar
    • Export Citation
  • 31.

    Post PG, Fairbrother JT, Barros JAC. Self-controlled amount of practice benefits learning of a motor skill. Res Q Exerc Sport. 2011;82(3):474481. PubMed ID: 21957706 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Goodwin JE, Meeuwsen HJ. Using bandwidth knowledge of results to alter relative frequencies during motor skill acquisition. Res Q Exerc Sport. 1995;66(2):99104. PubMed ID: 7644839 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Sherwood DE. Effect of bandwidth knowledge of results on movement consistency. Percept Mot Skills. 1988;66(2):535542. PubMed ID: 3399331 doi:

  • 34.

    Junqueira AHM. Thin bandwidth knowledge of results (KR) improves performance consistency on motor skill acquisition. Am J Sports Sci. 2015;3(6):115. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ugrinowitsch H, Ugrinowitsch AAC, Benda RN, Tertuliano IW. Effect of bandwidth knowledge of results on the learning of a grip force control task. Percept Mot Skills. 2010;111(3):643652. PubMed ID: 21319605 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cruz MP, Benda RN, Lage GM, Cattuzzo MT, Ugrinowitsch H. Bandwidth knowledge of results persists on motor skills acquisition. Montricidade. 2018;14(2–3):107114. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Badets A, Blandin Y. Observational learning: effects of bandwidth knowledge of results. J Mot Behav. 2005;37(3):211216. PubMed ID: 15883118 doi:

  • 38.

    de Groot S, de Winter JCF, García JML, Mulder M, Wieringa PA. The effect of concurrent bandwidth feedback on learning the lane-keeping task in a driving simulator. Hum Factors. 2011;53(1):5062. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Soderstrom NC, Bjork RA. Learning versus performance: an integrative review. Perspect Psychol Sci. 2015;10(2):176199. PubMed ID: 25910388 doi:

  • 40.

    Kilteni K, Groten R, Slater M. The sense of embodiment in virtual reality. Presence Teleoperators Virtual Environ. 2012;21(4):373387. doi:

  • 41.

    Hinder MR, Tresilian JR, Riek S, Carson RG. The contribution of visual feedback to visuomotor adaptation: how much and when? Brain Res. 2008;1197:123134. PubMed ID: 18241844 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Schaffert N, Mattes K. Testing immediate and retention effects of acoustic feedback on the boat motion in high-performance rowing. J Hum Sport Exerc. 2014;9(2):616628. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Wierinck E, Puttemans V, van Steenberghe D. Effect of tutorial input in addition to augmented feedback on manual dexterity training and its retention. Eur J Dent Educ. 2006;10(1):2431. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Blana D, Kyriacou T, Lambrecht JM, Chadwick EK. Feasibility of using combined EMG and kinematic signals for prosthesis control: a simulation study using a virtual reality environment. J Electromyogr Kinesiol. 2016;29:2127. PubMed ID: 26190031 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Lambrecht JM, Pulliam CL, Kirsch RF. Virtual reality environment for simulating tasks with a myoelectric prosthesis: an assessment and training tool. J Prosthet Orthot. 2011;23(2):8994. PubMed ID: 23476108 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 175 175 69
Full Text Views 5 5 2
PDF Downloads 3 3 0