Gaze Accuracy Differences During Single-Leg Balance Following Anterior Cruciate Ligament Reconstruction

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Individuals following anterior cruciate ligament reconstruction (ACLR) demonstrate altered postural stability and functional movement patterns. It is hypothesized that individuals following ACLR may compensate with sensory adaptations with greater reliance on visual mechanisms during activities. It is unknown if visual compensatory strategies are implemented to maintain postural stability during functional tasks. Objective: To examine visual gaze accuracy during a single-leg balance task in individuals following ACLR compared with healthy, active controls. Design: Case control. Setting: Controlled laboratory. Participants: A total of 20 individuals (10 ACLR and 10 healthy controls) participated in the study. Data Collection and Analysis: Visual gaze patterns were obtained during 20-second single-leg balance trials while participants were instructed to look at presented targets. During the Stationary Target Task, the visual target was presented in a central location for the duration of the trial. The Moving Target Task included a visual target that randomly moved to 1 of 9 target locations for a period of 2 seconds. Targets were stratified into superior, middle, and inferior levels for the Moving Target Task. Results: The Stationary Target Task demonstrated no differences in visual error between groups (P = .89). The Moving Target Task demonstrated a significant interaction between group and target level (F 2,36 = 3.76, P = .033). Individuals following ACLR demonstrated greater visual error for the superior targets (ACLR = .70 [.44] m, healthy = .41 [.21] m, Cohen d = 0.83 [0.06 to 1.60]) and inferior targets (ACLR = .68 [.25] m, healthy = .33 [.16] m, Cohen d = 1.67 [0.81 to 2.52]). Conclusion: Individuals following ACLR demonstrate greater visual error during settings of high or low visual stimuli compared with healthy individuals to maintain single-limb postural stability. This population may rely on visual input to compensate for the somatosensory changes following injury.

Bodkin is with the Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Hertel and Hart are with the Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.

Bodkin (stephan.bodkin@cuanschutz.edu) is corresponding author.
  • 1.

    Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):23632370. PubMed ID: 25086064 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ardern CL, Webster KE, Taylor NF, Feller JA. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med. 2011;45(7):596606. PubMed ID: 21398310 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804808. PubMed ID: 27162233 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116121. PubMed ID: 22343967 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381393. PubMed ID: 25579692 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Remaud A, Boyas S, Lajoie Y, Bilodeau M. Attentional focus influences postural control and reaction time performances only during challenging dual-task conditions in healthy young adults. Exp Brain Res. 2013;231(2):219229. PubMed ID: 23995564 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wulf G, Tollner T, Shea CH. Attentional focus effects as a function of task difficulty. Res Q Exerc Sport. 2007;78(3):257264. PubMed ID: 17679499 doi:

  • 8.

    Santello M, McDonagh MJN, Challis JH. Visual and non-visual control of landing movements in humans. J Physiol. 2001;537(1):313327. PubMed ID: 11711583 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chu YC, Sell TC, Abt JP, et al. Air assault soldiers demonstrate more dangerous landing biomechanics when visual input is removed. Mil Med. 2012;177(1):4147. PubMed ID: 22338978 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Diekfuss JA, Rhea CK, Schmitz RJ, et al. The influence of attentional focus on balance control over seven days of training. J Mot Behav. 2019;51(3):281292. PubMed ID: 29792580 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McNevin NH, Wulf G. Attentional focus on supra-postural tasks affects postural control. Hum Mov Sci. 2002;21(2):187202. PubMed ID: 12167298 doi:

  • 13.

    Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54(4):11431154. PubMed ID: 11765737 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Nedergaard NJ, Dalbo S, Petersen SV, Zebis MK, Bencke J. Biomechanical and neuromuscular comparison of single- and multi-planar jump tests and a side-cutting maneuver: implications for ACL injury risk assessment. Knee. 2020;27(2):324333. PubMed ID: 31889614 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Lanier AS, Knarr BA, Stergiou N, Snyder-Mackler L, Buchanan TS. ACL injury and reconstruction affect control of ground reaction forces produced during a novel task that simulates cutting movements. J Orthop Res. 2020;38(8):17461752. PubMed ID: 31971281 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88(3):10971118. PubMed ID: 12205132 doi:

  • 17.

    Henriksson M, Ledin T, Good L. Postural control after anterior cruciate ligament reconstruction and functional rehabilitation. Am J Sports Med. 2001;29(3):359366. PubMed ID: 11394609 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wikstrom EA, Song K, Pietrosimone BG, Blackburn JT, Padua DA. Visual utilization during postural control in anterior cruciate ligament- deficient and -reconstructed patients: systematic reviews and meta-analyses. Arch Phys Med Rehabil. 2017;98(10):20522065. PubMed ID: 28483655 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mohammadi-Rad S, Salavati M, Ebrahimi-Takamjani I, et al. Dual-tasking effects on dynamic postural stability in athletes with and without anterior cruciate ligament reconstruction. J Sport Rehabil. 2016;25(4):324329. PubMed ID: 27632858 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Okuda K, Abe N, Katayama Y, Senda M, Kuroda T, Inoue H. Effect of vision on postural sway in anterior cruciate ligament injured knees. J Orthop Sci. 2005;10(3):277283. PubMed ID: 15928890 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kirsch AN, Bodkin SG, Saliba SA, Hart JM. Measures of agility and single-legged balance as clinical assessments in patients with anterior cruciate ligament reconstruction and healthy individuals. J Athl Train. 2019;54(12):12601268. PubMed ID: 31618074 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Garber CE, Blissmer B, Deschenes MR, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):13341359. PubMed ID: 21694556 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rossi MJ, Lubowitz JH, Guttmann D. Development and validation of the International Knee Documentation Committee Subjective Knee Form. Am J Sports Med. 2002;30(1):152. PubMed ID: 11799013 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med. 2009;37(5):890897. PubMed ID: 19261899 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Myer GD, Schmitt LC, Brent JL, et al. Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther. 2011;41(6):377387. PubMed ID: 21289456 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fitzpatrick R, Burke D, Gandevia SC. Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. J Neurophysiol. 1996;76(6):39944008. PubMed ID: 8985895 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gatev P, Thomas S, Kepple T, Hallett M. Feedforward ankle strategy of balance during quiet stance in adults. J Physiol. 1999;514(3):915928. PubMed ID: 9882761 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Smith MD, Bell DR. Negative effects on postural control after anterior cruciate ligament reconstruction as measured by the balance error scoring system. J Sport Rehabil. 2013;22(3):224228. PubMed ID: 23628880 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lion A, Gette P, Meyer C, Seil R, Theisen D. Effect of cognitive challenge on the postural control of patients with ACL reconstruction under visual and surface perturbations. Gait Posture. 2018;60:251257. PubMed ID: 29309971 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Giveans MR, Yoshida K, Bardy B, Riley M, Stoffregen TA. Postural sway and the amplitude of horizontal eye movements. Ecol Psychol. 2011;23(4):247266. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Ray CT, Horvat M, Croce R, Mason RC, Wolf SL. The impact of vision loss on postural stability and balance strategies in individuals with profound vision loss. Gait Posture. 2008;28(1):5861. PubMed ID: 18023185 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Haworth JL, Vallabhajosula S, Stergiou N. Gaze and posture coordinate differently with the complexity of visual stimulus motion. Exp Brain Res. 2014;232(9):27972806. PubMed ID: 24792502 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16(1):114. PubMed ID: 12127181 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Bousquet BA, O’Brien L, Singleton S, Beggs M. Post-operative criterion based rehabilitation of ACL repairs: a clinical commentary. Int J Sports Phys Ther. 2018;13(2):293305. PubMed ID: 30090687 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kapreli E, Athanasopoulos S, Gliatis J, et al. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12):24192426. PubMed ID: 19940314 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Grooms DR, Page SJ, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10):10051010. PubMed ID: 26509775 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P. Clinical and neurophysiological abnormalities before and after reconstruction of the anterior cruciate ligament of the knee. Acta Neurol Scand. 1999;99(5):303307. PubMed ID: 10348160 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943948. PubMed ID: 17369562 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 393 393 108
Full Text Views 13 13 4
PDF Downloads 12 12 3