Alterations in Quadriceps Neurologic Complexity After Anterior Cruciate Ligament Reconstruction

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Traditionally, quadriceps activation failure after anterior cruciate ligament reconstruction (ACLR) is estimated using discrete isometric torque values, providing only a snapshot of neuromuscular function. Sample entropy (SampEn) is a mathematical technique that can measure neurologic complexity during the entirety of contraction, elucidating qualities of neuromuscular control not previously captured. Objective: To apply SampEn analyses to quadriceps electromyographic activity in order to more comprehensively characterize neuromuscular deficits after ACLR. Design: Cross-sectional. Setting: Laboratory. Participants: ACLR: n = 18; controls: n = 24. Interventions: All participants underwent synchronized unilateral quadriceps isometric strength, activation, and electromyography testing during a superimposed electrical stimulus. Main Outcome Measures: Group differences in strength, activation, and SampEn were evaluated with t tests. Associations between SampEn and quadriceps function were evaluated with Pearson product–moment correlations and hierarchical linear regressions. Results: Vastus medialis SampEn was significantly reduced after ACLR compared with controls (P = .032). Vastus medialis and vastus lateralis SampEn predicted significant variance in activation after ACLR (r2 = .444; P = .003). Conclusions: Loss of neurologic complexity correlates with worse activation after ACLR, particularly in the vastus medialis. Electromyographic SampEn is capable of detecting underlying patterns of variability that are associated with the loss of complexity between key neurophysiologic events after ACLR.

Davi and Woxholdt are with the Department of Kinesiology, University of Connecticut, Storrs, CT, USA. Rush is with the School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, USA. Adam S. Lepley and Lindsey K. Lepley are with the School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.

Lindsey K. Lepley (llepley@umich.edu) is corresponding author.
  • 1.

    Lepley LK. Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health. 2015;7(3):231238. PubMed ID: 26131300 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hurley MV, Jones DW, Newham DJ. Arthrogenic quadriceps inhibition and rehabilitation of patients with extensive traumatic knee injuries. Clin Sci. 1994;86(3):305310. PubMed ID: 8156741 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lisee C, Lepley AS, Birchmeier T, O’Hagan K, Kuenze C. Quadriceps strength and volitional activation after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Health. 2019;11(2):163179. PubMed ID: 30638441 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lake DR, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol. 2002;283(3): R789R797. PubMed ID: 12185014 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039H2049. PubMed ID: 10843903 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Meigal AY, Rissanen SM, Tarvainen MP, Airaksinen O, Kankaanpaa M, Karjalainen PA. Non-linear EMG parameters for differential and early diagnostics of Parkinson’s disease. Front Neurol. 2013;4:135. PubMed ID: 24062722 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pethick J, Whiteaway K, Winter SL, Burnley M. Prolonged depression of knee-extensor torque complexity following eccentric exercise. Exp Physiol. 2019;104(1):100111. PubMed ID: 30485571 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Pethick J, Winter SL, Burnley M. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man. J Physiol. 2015;593(8):20852096. PubMed ID: 25664928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res. 2011;63(suppl 11):S208S228. PubMed ID: 22588746 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Irrgang JJ, Anderson AF, Boland AL, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001;29(5):600613. PubMed ID: 11573919 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lepley LK, Palmieri-Smith RM. Pre-operative quadriceps activation is related to post-operative activation, not strength, in patients post-ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2016;24(1):236246. PubMed ID: 25315083 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Delagi EF, Perotto A. Anatomic Guide for the Electromyographer—The Limbs. 2nd ed. Springfield, IL: Thomas; 1980.

  • 13.

    Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng. 2013;41(2):349365. PubMed ID: 23064819 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lepley LK, McKeon PO, Fitzpatrick SG, Beckemeyer CL, Uhl TL, Butterfield TA. Neuromuscular alterations after ankle sprains: an animal model to establish causal links after injury. J Athl Train. 2016;51(10):797805. PubMed ID: 27831747 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zhang X, Zhou P. Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes. J Electromyogr Kinesiol. 2012;22(6):901907. PubMed ID: 22800657 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cashaback JG, Cluff T, Potvin JR. Muscle fatigue and contraction intensity modulates the complexity of surface electromyography. J Electromyogr Kinesiol. 2013;23(1):7883. PubMed ID: 22959820 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ferrari E, Cooper G, Reeves ND, Hodson-Tole EF. Surface electromyography can quantify temporal and spatial patterns of activation of intrinsic human foot muscles. J Electromyogr Kinesiol. 2018;39:149155. PubMed ID: 29506007 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kang HG, Dingwell JB. Differential changes with age in multiscale entropy of electromyography signals from leg muscles during treadmill walking. PLoS One. 2016;11(8):e0162034. PubMed ID: 27570974 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ahmadi S, Wu C, Sepehri N, Kantikar A, Nankar M, Szturm T. The effects of aging and dual tasking on human gait complexity during treadmill walking: a comparative study using quantized dynamical entropy and sample entropy. J Biomech Eng. 2018;140(1):011006-1–011006-10. PubMed ID: 28975279 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ramdani S, Seigle B, Lagarde J, Bouchara F, Bernard PL. On the use of sample entropy to analyze human postural sway data. Med Eng Phys. 2009;31(8):10231031. PubMed ID: 19608447 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Manor B, Lipsitz LA. Physiologic complexity and aging: implications for physical function and rehabilitation. Progress Neuro-Psychopharmacol Biol Psych. 2013;45:287293. PubMed ID: 22985940 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):665674. PubMed ID: 25844855 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lepley AS, Grooms DR, Burland JP, Davi SM, Kinsella-Shaw JM, Lepley LK. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res. 2019;237(5):12671278. PubMed ID: 30852644 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Karthick PA, Makaram N, Ramakrishnan S. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:32763279. PubMed ID: 25570690 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Siddiqi A, Kumar D, Arjunan S. Age-related motor unit remodeling in the Tibialis Anterior. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:60906093. PubMed ID: 26737681 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cao Y, Cai L, Wang J, et al. Characterization of complexity in the electroencephalograph activity of Alzheimer’s disease based on fuzzy entropy. Chaos. 2015;25(8):083116. PubMed ID: 26328567 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Tao W, Zhang X, Chen X, Wu D, Zhou P. Multi-scale complexity analysis of muscle coactivation during gait in children with cerebral palsy. Front Human Neurosci. 2015;9:367. PubMed ID: 26257622 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Meigal AI, Rissanen S, Tarvainen MP, et al. Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J Electromyograph Kinesiol. 2009;19(3):e206e213. PubMed ID: 18407522 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Mann RK, Edwards R, Zhou J, Fenney A, Jog M, Duval C. Comparing movement patterns associated with Huntington’s chorea and Parkinson’s dyskinesia. Exp Brain Res. 2012;218(4):639654. PubMed ID: 22434341 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):18061809. PubMed ID: 1482430 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Fry CS, Johnson DL, Ireland ML, Noehren B. ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. J Orthop Res. 2017;35(9):18761885. PubMed ID: 27935172 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828839. PubMed ID: 25693627 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kuenze CM, Blemker SS, Hart JM. Quadriceps function relates to muscle size following ACL reconstruction. J Orthop Res. 2016;34(9):16561662. PubMed ID: 22588746 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Han SW, Sawatsky A, de Brito Fontana H, Herzog W. Contribution of individual quadriceps muscles to knee joint mechanics. J Exp Biol. 2019;222(pt 6):jeb188292. PubMed ID: 30846537 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):16471666. PubMed ID: 11054744 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Son J, Indresano A, Sheppard K, Ward SR, Lieber RL. Intraoperative and biomechanical studies of human vastus lateralis and vastus medialis sarcomere length operating range. J Biomech. 2018;67:9197. PubMed ID: 29258751 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Sigward SM, Lin P, Pratt K. Knee loading asymmetries during gait and running in early rehabilitation following anterior cruciate ligament reconstruction: a longitudinal study. Clin Biomech. 2016;32:249254. PubMed ID: 26640045 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Pfeiffer SJ, Blackburn JT, Luc-Harkey B, et al. Peak knee biomechanics and limb symmetry following unilateral anterior cruciate ligament reconstruction: associations of walking gait and jump-landing outcomes. Clin Biomech. 2018;53:7985. PubMed ID: 29471191 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Zarzycki R, Morton SM, Charalambous CC, Marmon A, Snyder-Mackler L. Corticospinal and intracortical excitability differ between athletes early after ACLR and matched controls. J Orthop Res. 2018;36(11):29412948. PubMed ID: 29846002 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Drechsler WI, Cramp MC, Scott OM. Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol. 2006;98(6):613623. PubMed ID: 17036217 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    McHugh MP, Tyler TF, Nicholas SJ, Browne MG, Gleim GW. Electromyographic analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2001;31(1):2532. PubMed ID: 11204793 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Snyder-Mackler L, Binder-Macleod SA, Williams PR. Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 1993;25(7):783789. PubMed ID: 8350699 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    McNair PJ, Wood GA. Frequency analysis of the EMG from the quadriceps of anterior cruciate ligament deficient individuals. Electromyogr Clin Neurophysiol. 1993;33(1):4348. PubMed ID: 8436084

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    McHugh MP, Tyler TF, Browne MG, Gleim GW, Nicholas SJ. Electromyographic predictors of residual quadriceps muscle weakness after anterior cruciate ligament reconstruction. Am J Sports Med. 2002;30(3):334339. PubMed ID: 12016072 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Tyler TF, McHugh MP, Gleim GW, Nicholas SJ. The effect of immediate weightbearing after anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 1998;357:141148. PubMed ID: 9917711 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 429 429 59
Full Text Views 13 13 1
PDF Downloads 10 10 1