Single- Versus Dual-Task Functional Movement Paradigms: A Biomechanical Analysis

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Laboratory-based movement assessments are commonly performed without cognitive stimuli (ie, single-task) despite the simultaneous cognitive processing and movement (ie, dual task) demands required during sport. Cognitive loading may critically alter human movement and be an important consideration for truly assessing functional movement and understanding injury risk in the laboratory, but limited investigations exist. Objective: To comprehensively examine and compare kinematics and kinetics between single- and dual-task functional movement among healthy participants while controlling for sex. Design: Cross-sectional study. Setting: Laboratory. Patients (or Other Participants): Forty-one healthy, physically active participants (49% female; 22.5 ± 2.1 y; 172.5 ± 11.9 cm; 71.0 ± 13.7 kg) enrolled in and completed the study. Intervention(s): All participants completed the functional movement protocol under single- and dual-task (subtracting by 6s or 7s) conditions in a randomized order. Participants jumped forward from a 30-cm tall box and performed (1) maximum vertical jump landings and (2) dominant and (3) nondominant leg, single-leg 45° cuts after landing. Main Outcome Measures: The authors used mixed-model analysis of variances (α = .05) to compare peak hip, knee, and ankle joint angles (degrees) and moments (N·m/BW) in the sagittal and frontal planes, and peak vertical ground reaction force (N/BW) and vertical impulse (Ns/BW) between cognitive conditions and sex. Results: Dual-task resulted in greater peak vertical ground reaction force compared with single-task during jump landing (mean difference = 0.06 N/BW; 95% confidence interval [CI], 0.01 to 0.12; P = .025) but less force during dominant leg cutting (mean difference = −0.08 N/BW; 95% CI, −0.14 to −0.02; P = .015). Less hip-flexion torque occurred during dual task than single task (mean difference = −0.09 N/BW; 95% CI, −0.17 to −0.02). No other outcomes were different between single and dual task (P ≥ .053). Conclusions: Slight, but potentially important, kinematic and kinetic differences were observed between single- and dual-task that may have implications for functional movement assessments and injury risk research. More research examining how various cognitive and movement tasks interact to alter functional movement among pathological populations is warranted before clinical implementation.

Lempke, Oh, Johnson, Schmidt, and Lynall are with the UGA Biomechanics Laboratory, Department of Kinesiology, University of Georgia, Athens, GA, USA. Lempke, Johnson, Schmidt and Lynall are with the UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, GA, USA.

Lynall (rlynall@uga.edu) is corresponding author.
  • 1.

    Lisman P, O’Connor FG, Deuster PA, Knapik JJ. Functional movement screen and aerobic fitness predict injuries in military training. Med Sci Sports Exerc. 2013;45(4):636643. PubMed ID: 23190584 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Moran RW, Schneiders AG, Mason J, Sullivan SJ. Do Functional Movement Screen (FMS) composite scores predict subsequent injury? A systematic review with meta-analysis. Br J Sports Med. 2017;51(23):16611669. PubMed ID: 28360142 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW. The landing error scoring system as a screening tool for an anterior cruciate ligament injury–prevention program in elite-youth soccer athletes. J Athl Train. 2015;50(6):589595. PubMed ID: 25811846 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bodkin S, Goetschius J, Hertel J, Hart J. Relationships of muscle function and subjective knee function in patients after ACL reconstruction. Orthop J Sports Med. 2017;5(7):232596711771904. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Kirsch AN, Bodkin SG, Saliba SA, Hart JM. Measures of agility and single-legged balance as clinical assessments in patients with anterior cruciate ligament reconstruction and healthy individuals. J Athl Train. 2019;54(12):12601268. PubMed ID: 31618074 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE, Beutler AI. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med. 2009;37(10):19962002. PubMed ID: 19726623 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    DuPrey KM, Liu K, Cronholm PF, et al. Baseline time to stabilization identifies anterior cruciate ligament rupture risk in collegiate athletes. Am J Sports Med. 2016;44(6):14871491. PubMed ID: 26920429 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    DuBose DF, Herman DC, Jones DL, et al. Lower extremity stiffness changes following concussion in collegiate football players. Med Sci Sports Exerc. 2017;49(1):167172. PubMed ID: 27501359 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ardakani MK, Wikstrom EA, Minoonejad H, Rajabi R, Sharifnezhad A. Hop-stabilization training and landing biomechanics in athletes with chronic ankle instability: a randomized controlled trial. J Athl Train. 2019;54(12):12961303. PubMed ID: 31618073 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lapointe AP, Nolasco LA, Sosnowski A, et al. Kinematic differences during a jump cut maneuver between individuals with and without a concussion history. Int J Psychophysiol. 2018;132:9398. PubMed ID: 28818697 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Besier TF, Lloyd DG, Ackland TR, Cochrane JL. Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc. 2001;33:11761181. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Howell DR, Lynall RC, Buckley TA, Herman DC. Neuromuscular control deficits and the risk of subsequent injury after a concussion: a scoping review. Sports Med. 2018;48(5):1097. PubMed ID: 29453743 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Springer S, Gottlieb U. Effects of dual-task and walking speed on gait variability in people with chronic ankle instability: a cross-sectional study. BMC Musculoskelet Disord. 2017;18(1):316. PubMed ID: 28732483 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mohammadi-Rad S, Salavati M, Ebrahimi-Takamjani I, et al. Dual-tasking effects on dynamic postural stability in athletes with and without anterior cruciate ligament reconstruction. J Sport Rehabil. 2016;25(4):324329. PubMed ID: 27632858 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Almonroeder TG, Kernozek T, Cobb S, Slavens B, Wang J, Huddleston W. Cognitive demands influence lower extremity mechanics during a drop vertical jump task in female athletes. J Orthop Sports Phys Ther. 2018;48(5):381387. PubMed ID: 29320946 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dai B, Cook RF, Meyer EA, et al. The effect of a secondary cognitive task on landing mechanics and jump performance. Sports Biomech. 2018;17(2):192205. PubMed ID: 28632053 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McLean SG, Borotikar B, Lucey SM. Lower limb muscle pre-motor time measures during a choice reaction task associate with knee abduction loads during dynamic single leg landings. Clin Biomech. 2010;25(6):563569. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Shinya M, Wada O, Yamada M, Ichihashi N, Oda S. The effect of choice reaction task on impact of single-leg landing. Gait Posture. 2011;34(1):5559. PubMed ID: 21530269 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Simon JE, Millikan N, Yom J, Grooms DR. Neurocognitive challenged hops reduced functional performance relative to traditional hop testing. Phys Ther Sport. 2020;41:97102. PubMed ID: 31837629 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Talarico MK, Lynall RC, Mauntel TC, Weinhold PS, Padua DA, Mihalik JP. Static and dynamic single leg postural control performance during dual-task paradigms. J Sports Sci. 2017;35(11):11181124. PubMed ID: 27498815 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rahnama L, Salavati M, Akhbari B, Mazaheri M. Attentional demands and postural control in athletes with and without functional ankle instability. J Orthop Sports Phys Ther. 2010;40(3):180187. PubMed ID: 20195021 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Büttner F, Howell DR, Ardern CL, et al. Concussed athletes walk slower than non-concussed athletes during cognitive-motor dual-task assessments but not during single-task assessments 2 months after sports concussion: a systematic review and meta-analysis using individual participant data. Br J Sports Med. 2020;54(2):94101. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    McPherson AL, Nagai T, Webster KE, Hewett TE. Musculoskeletal injury risk after sport-related concussion: a systematic review and meta-analysis. Am J Sports Med. 2019;47(7):17541762. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McPherson AL, Shirley MB, Schilaty ND, Larson DR, Hewett TE. Effect of a concussion on anterior cruciate ligament injury risk in a general population. Sports Med. 2020;50(6):12031210. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Eagle SR, Kontos AP, Pepping G-J, et al. Increased risk of musculoskeletal injury following sport-related concussion: a perception–action coupling approach. Sports Med. 2020;50(1):1523doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wilkerson GB, Grooms DR, Acocello SN. Neuromechanical considerations for postconcussion musculoskeletal injury risk management. Curr Sports Med Rep. 2017;16(6):419427. PubMed ID: 29135640 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Shultz SJ, Schmitz RJ, Cone JR, et al. Changes in fatigue, multiplanar knee laxity, and landing biomechanics during intermittent exercise. J Athl Train. 2015;50(5):486497. PubMed ID: 25674926 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Schmitz RJ, Shultz SJ. Contribution of knee flexor and extensor strength on sex-specific energy absorption and torsional joint stiffness during drop jumping. J Athl Train. 2010;45(5):445452. PubMed ID: 20831388 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech. 2003;18(7):662669. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Kernozek TW, Torry MR, Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med. 2007;36(3):554565. PubMed ID: 18006677 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Holden S, Boreham C, Delahunt E. Sex differences in landing biomechanics and postural stability during adolescence: a systematic review with meta-analyses. Sports Med. 2016;46(2):241253. PubMed ID: 26542164 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Padua DA, DiStefano LJ, Hewett TE, et al. National athletic trainers’ association position statement: prevention of anterior cruciate ligament injury. J Athl Train. 2018;53(1):519. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gulbrandsen M, Hartigan DE, Patel KA, Makovicka JL, Tummala SV, Chhabra A. Ten-year epidemiology of ankle injuries in men’s and women’s collegiate soccer players. J Athl Train. 2019;54(8):881888. PubMed ID: 31390272 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Montalvo AM, Schneider DK, Yut L, et al. “What’s my risk of sustaining an ACL injury while playing sports?” A systematic review with meta-analysis. Br J Sports Med. 2019;53(16):10031012. PubMed ID: 29514822 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Howell DR, Oldham JR, Meehan WP, DiFabio MS, Buckley TA. Dual-task tandem gait and average walking speed in healthy collegiate athletes. Clin J Sport Med. 2019;29(3):238244. PubMed ID: 31033618 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Haskell WL, Lee I-M, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):14231434. PubMed ID: 17762377 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Fino PC, Nussbaum MA, Brolinson PG. Locomotor deficits in recently concussed athletes and matched controls during single and dual-task turning gait: preliminary results. J NeuroEngineering Rehabil. 2016;13(1):65. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Lempke LB, Johnson RS, Schmidt JD, Lynall RC. Clinical versus functional reaction time: implications for postconcussion management. Med Sci Sports Exerc. 2020;52(8):16501657. PubMed ID: 32053547 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Howell DR, Osternig LR, Koester MC, Chou L-S. The effect of cognitive task complexity on gait stability in adolescents following concussion. Exp Brain Res. 2014;232(6):17731782. PubMed ID: 24531643 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Lynall RC, Blackburn JT, Guskiewicz KM, Marshall SW, Plummer P, Mihalik JP. Reaction time and joint kinematics during functional movement in recently concussed individuals. Arch Phys Med Rehabil. 2018;99(5):880886. PubMed ID: 29337022 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Lawrence RK, Kernozek TW, Miller EJ, Torry MR, Reuteman P. Influences of hip external rotation strength on knee mechanics during single-leg drop landings in females. Clin Biomech. 2008;23(6):806813. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Delahunt E, Monaghan K, Caulfield B. Changes in lower limb kinematics, kinetics, and muscle activity in subjects with functional instability of the ankle joint during a single leg drop jump. J Orthop Res. 2006;24(10):19912000. PubMed ID: 16894592 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J Anesthesiol. 2018;71(5):353360. PubMed ID: 30157585 doi:

  • 45.

    Tukey JW. The Problem of Multiple Comparisons. Princeton University; 1953.

  • 46.

    Lynall RC, Blackburn JT, Guskiewicz KM, Marshall SW, Plummer P, Mihalik JP. Functional balance assessment in recreational college-aged individuals with a concussion history. J Sci Med Sport. 2019;22(5):503508. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Plummer P, Eskes G, Wallace S, et al. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch Phys Med Rehabil. 2013;94(12):25652574.e6. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthrosc J Arthrosc Relat Surg. 2007;23(12):13201325.e6. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 735 735 130
Full Text Views 35 35 7
PDF Downloads 18 18 0