Upper-Extremity Perceptual-Motor Training Improves Whole-Body Reactive Agility Among Elite Athletes With History of Sport-Related Concussion

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Sport-related concussion (SRC) elevates risk for subsequent injury, which may relate to impaired perceptual-motor processes that are potentially modifiable. Objective: To assess a possible upper-extremity (UE) training effect on whole-body (WB) reactive agility performance among elite athletes with history of SRC (HxSRC) and without such history of SRC. Design: Cohort study. Setting: Residential training center. Participants: Elite athletes (12 males and 8 females), including 10 HxSRC and 10 without such history of SRC. Intervention: One-minute training sessions completed 2 to 3 times per week over a 3-week period involved verbal identification of center arrow direction for 10 incongruent and 10 congruent flanker test trials with simultaneous reaching responses to deactivate illuminated buttons. Main Outcome Measures: Pretraining and posttraining assessments of UE and WB reactive responses included flanker test conflict effect (incongruent minus congruent reaction time) and WB lateral average asymmetry derived from reaction time, speed, acceleration, and deceleration in opposite directions. Discrimination was assessed by receiver operating characteristic analysis, and training effect was assessed by repeated-measures analysis of variance. Results: Pretraining discrimination between HxSRC and without such history of SRC was greatest for conflict effect ≥80 milliseconds and WB lateral average asymmetry ≥18%. Each athlete completed 6 training sessions, which improved UE mean reaction time from 767 to 646 milliseconds (P < .001) and reduced mean conflict effect from 96 to 53 milliseconds (P = .039). A significant group × trial interaction was evident for WB lateral average asymmetry (P = .004), which was reduced from 24.3% to 12.5% among those with HxSRC. Conclusions: Suboptimal perceptual-motor performance may represent a subtle long-term effect of concussion that is modifiable through UE training, which appears to improve WB reactive capabilities.

Wilkerson is with the Department of Health & Human Performance, The University of Tennessee at Chattanooga, Chattanooga, TN, USA. Nabhan is with the Sports Medicine Division, United States Olympic Committee, Colorado Springs, CO, USA. Crane is with the Emory Orthopaedics, Atlanta, GA, USA.

Wilkerson (Gary-Wilkerson@utc.edu) is corresponding author.
  • 1.

    Dimitriadis SI, Zouridakis G, Rezaie R, et al. Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury. NeuroImage Clin. 2015;9:519531. PubMed ID: 26640764 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Scheurer SA, Sherman DA, Glaviano NR, et al. Corticomotor function is associated with quadriceps rate of torque development in individuals with ACL surgery. Exp Brain Res. 2020;238(2):283294. PubMed ID: 31897518 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Johnson B, Zhang K, Gay M, et al. Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage. 2012;59(1):511518. PubMed ID: 21846504 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wong AL, Haith AM, Krakauer JW. Motor planning. Neuroscientist. 2015;21(4):385398. PubMed ID: 24981338 doi:

  • 5.

    Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Brain function associated with reaction time after sport-related concussion [published online ahead of print August 26, 2020]. Brain Imaging Behav. PubMed ID: 32851585 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hunzinger KJ, Sanders EW, Deal HE, et al. The use of a visual motor test to identify lingering deficits in concussed collegiate athletes. J Clin Transl Res. 2020;5(4):178185. PubMed ID: 32637719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Selen LP, Shadlen MN, Wolpert DM. Deliberation in the motor system: reflex gains track evolving evidence leading to a decision. J Neurosci. 2012;32(7):22762286. PubMed ID: 22396403 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Svoboda K, Li N. Neural mechanisms of movement planning: motor cortex and beyond. Curr Opin Neurobiol. 2018;49:3341. PubMed ID: 29172091 doi:

  • 9.

    Ettenhofer ML, Barry DM. Saccadic impairment associated with remote history of mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2016;28(3):223231. PubMed ID: 27019067 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Adams RA, Shipp S, Friston KJ. Predictions not commands: active inference in the motor system. Brain Struct Funct. 2013;218(3):611643. PubMed ID: 23129312 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hadlow SM, Panchuk D, Mann DL, Portus MR, Abernethy B. Modified perceptual training in sport: a new classification framework. J Sci Med Sport. 2018;21(9):950958. PubMed ID: 29433921 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7(1):117. PubMed ID: 17598730 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):23492356. PubMed ID: 17329432 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brown JA, Dalecki M, Hughes C, et al. Cognitive-motor integration deficits in young adult athletes following concussion. BMC Sports Sci Med Rehabil. 2015;7(1):25. PubMed ID: 26491541 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wu T, Liu J, Hallett M, Zheng Z, et al. Cerebellum and integration of neural networks in dual-task processing. Neuroimage. 2013;65:466475. PubMed ID: 23063842 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Leone C, Feys P, Moumdjian L, D’Amico E, et al. Cognitive-motor dual-task interference: a systematic review of neural correlates. Neurosci Biobehav Rev. 2017;75:348360. PubMed ID: 28104413 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Erickson KI, Ho M-HR, Colcombe SJ, et al. A structural equation modeling analysis of attentional control: an event-related fMRI study. Brain Res Cogn Brain Res. 2005;22(3):349357. PubMed ID: 15722206 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mennes M, Kelly C, Zuo X-N, et al. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage. 2010;50(4):16901701. PubMed ID: 20079856 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wylie S, Ridderinkhof K, Eckerle M, et al. Inefficient response inhibition in individuals with mild cognitive impairment. Neuropsychologia. 2007;45(7):14081419. PubMed ID: 17178419 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    De Beaumont L, Theoret H, Mongeon D, et al. Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood. Brain. 2009;132(3):695708. PubMed ID: 19176544 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    McGowan AL, Bretzin AC, Savage JL, et al. Acute and protracted disruptions to inhibitory control following sports-related concussion. Neuropsychologia. 2019;131:223232. PubMed ID: 31152752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pontifex MB, O’Connor PM, Broglio SP, et al. The association between mild traumatic brain injury history and cognitive control. Neuropsychologia. 2009;47(14):32103216. PubMed ID: 19664646 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wilkerson GB, Nabhan DC, Prusmack CJ, et al. Detection of persisting concussion effects on neuromechanical responsiveness. Med Sci Sports Exerc. 2018;50(9):17501756. PubMed ID: 29683918 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wilkerson GB, Nabhan DC, Crane RT. Concussion history and neuromechanical responsiveness asymmetry. J Athl Train. 2020;55(6):594600. PubMed ID: 32396473 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Brett BL, Wu Y-C, Mustafi SM, et al. The association between persistent white-matter abnormalities and repeat injury after sport-related concussion. Front Neurol. 2020;10:1345. PubMed ID: 32038451 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Harada GK, Rugg CM, Arshi A, et al. Concussions increase odds and rate of lower extremity injury in National Collegiate Athletic Association athletes after return to play. Am J Sports Med. 2019;47(13):32563262. PubMed ID: 31513431 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Filley CM, Fields RD. White matter and cognition: making the connection. J Neurophysiol. 2016;116(5):20932104. PubMed ID: 27512019 doi:

  • 28.

    Engeroff T, Giesche F, Niederer D, et al. Explaining upper or lower extremity crossover effects of visuomotor choice reaction time training. Percept Mot Skills. 2019;126(4):675693. PubMed ID: 31039674 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kropotov JD. Psychometrics and neuropsychological assessment. In: Kropotov JD ed. Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment. Cambridge, MA: Academic Press; 2016:916. doi:10.1016/c2012-0-07144-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Mertler CA, Reinhart RV. Pre-analysis data screening. In: Mertler CA, Reinhart RV, eds. Advanced and Multivariate Statistical Methods. New York, NY: Taylor & Francis Group; 2017:2770. doi:10.4324/9781315266978

    • Search Google Scholar
    • Export Citation
  • 31.

    Eagle SR, Kontos AP, Pepping G-J, et al. Increased risk of musculoskeletal injury following sport-related concussion: a perception-action coupling approach. Sports Med. 2019;50(1):1523. PubMed ID: 31228023 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    van Andel S, Cole MH, Pepping G-J. A systematic review on perceptual-motor calibration to changes in action capabilities. Hum Mov Sci. 2017;51:5971. PubMed ID: 27870980 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Beavan A, Spielmann J, Mayer J. Taking the first steps toward integrating testing and training cognitive abilities within high-performance athletes; insights from a professional German football club. Front Psychol. 2019;10:2773. PubMed ID: 31920822 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci. 2006;7(2):160. PubMed ID: 16429125 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Parr T, Friston KJ. The active construction of the visual world. Neuropsychologia. 2017;104:92101. PubMed ID: 28782543 doi:

  • 36.

    Borich M, Brodie S, Gray W, et al. Understanding the role of the primary somatosensory cortex: opportunities for rehabilitation. Neuropsychologia. 2015;79:246255. PubMed ID: 26164474 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Bartolomeo P, Thiebaut de Schotten M, Chica AB. Brain networks of visuospatial attention and their disruption in visual neglect. Front Human Neurosci. 2012;6:110. PubMed ID: 22586384 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Wilkerson GB, Simpson KA, Clark RA. Assessment and training of visuomotor reaction time for football injury prevention. J Sport Rehabil. 2017;26(1):2634. PubMed ID: 27632871 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 206 206 107
Full Text Views 6 6 3
PDF Downloads 4 4 1