Ultrasound Measures of Intrinsic Foot Muscle Size and Activation Following Lateral Ankle Sprain and Chronic Ankle Instability

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Tibial nerve impairment and reduced plantarflexion, hallux flexion, and lesser toe flexion strength have been observed in individuals with recent lateral ankle sprain (LAS) and chronic ankle instability (CAI). Diminished plantar intrinsic foot muscles (IFMs) size and contraction are a likely consequence. Objectives: To assess the effects of ankle injury on IFM size at rest and during contraction in young adults with and without LAS and CAI. Setting: Laboratory. Design: Cross-sectional. Patients: A total of 22 healthy (13 females; age = 19.6 [0.9], body mass index [BMI] = 22.5 [3.2]), 17 LAS (9 females; age =21.8 [4.1], BMI = 24.1 [3.7]), 21 Copers (13 females; age = 20.8 [2.9], BMI = 23.7 [2.9]), and 20 CAI (15 females; age = 20.9 [4.7], BMI = 25.1 [4.5]). Main Outcome Measures: Foot Posture Index (FPI), Foot Mobility Magnitude (FMM), and ultrasonographic cross-sectional area of the abductor hallucis, flexor digitorum brevis, quadratus plantae, and flexor hallucis brevis were assessed at rest, and during nonresisted and resisted contraction. Results: Multiple linear regression analyses assessing group, sex, BMI, FPI, and FMM on resting and contracted IFM size found sex (B = 0.45; P < .001), BMI (B = 0.05; P = .01), FPI (B = 0.07; P = .05), and FMM × FPI interaction (B = −0.04; P = .008) accounted for 19% of the variance (P = .002) in resting abductor hallucis measures. Sex (B = 0.42, P < .001) and BMI (B = 0.03, P = .02) explained 24% of resting flexor digitorum brevis measures (P < .001). Having a recent LAS (B = 0.06, P = .03) and FMM (B = 0.04, P = .02) predicted 11% of nonresisted quadratus plantae contraction measures (P = .04), with sex (P < .001) explaining 13% of resting quadratus plantae measures (B = 0.24, P = .02). Both sex (B = 0.35, P = .01) and FMM (B = 0.15, P = .03) predicted 16% of resting flexor hallucis brevis measures (P = .01). There were no other statistically significant findings. Conclusions: IFM resting ultrasound measures were primarily determined by sex, BMI, and foot phenotype and not injury status. Routine ultrasound imaging of the IFM following LAS and CAI cannot be recommended at this time but may be considered if neuromotor impairment is suspected.

Fraser, Koldenhoven, and Hertel are with the Department of Kinesiology, University of Virginia, Charlottesville, VA, USA. Fraser is also with the Warfighter Performance Department, Directorate for Operational Readiness & Health, Naval Health Research Center, San Diego, CA, USA. Koldenhoven is also with the Department of Health and Human Performance, Texas State University, San Marcos, TX, USA.

Fraser (john.j.fraser8.mil@mail.mil) is corresponding author.
  • 1.

    Waterman BR, Owens BD, Davey S, Zacchilli MA, Belmont PJ Jr. The epidemiology of ankle sprains in the United States. J Bone Jt Surg Am. 2010;92(13):22792284. PubMed ID: 20926721 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Wikstrom EA, Brown CN. Minimum reporting standards for copers in chronic ankle instability research. Sports Med. 2014;44(2):251268. PubMed ID: 24122774 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Recovery from a first-time lateral ankle sprain and the predictors of chronic ankle instability: a prospective cohort analysis. Am J Sports Med. 2016;44(4):9951003. PubMed ID: 26912285 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train. 2019;54(6):572588. PubMed ID: 31162943 doi:

  • 5.

    Fraser JJ, Koldenhoven RM, Jaffri AH, et al. Foot impairments contribute to functional limitation in individuals with ankle sprain and chronic ankle instability. Knee Surg Sports Traumatol Arthrosc. 2020;28(5):16001610. PubMed ID: 29980804 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Fraser JJ, Hertel J. Joint mobility & stability strategies for the ankle. In: 29.2 Neurology in Orthopaedics. La Crosse, WI: Academy of Orthopaedic Physical Therapy, APTA, Inc.; 2019. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nitz AJ, Dobner JJ, Kersey D. Nerve injury and grades II and III ankle sprains. Am J Sports Med. 1985;13(3):177182. PubMed ID: 4014532 doi:

  • 8.

    Jazayeri Shooshtari SM, Didehdar D, Moghtaderi Esfahani AR. Tibial and peroneal nerve conduction studies in ankle sprain. Electromyogr Clin Neurophysiol. 2007;47(6):301304. PubMed ID: 17918506

    • Search Google Scholar
    • Export Citation
  • 9.

    Abe T, Tayashiki K, Nakatani M, Watanabe H. Relationships of ultrasound measures of intrinsic foot muscle cross-sectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults. J Phys Ther Sci. 2016;28(1):1419. PubMed ID: 26957721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Fraser JJ, Mangum LC, Hertel J. Test-retest reliability of ultrasound measures of intrinsic foot motor function. Phys Ther Sport. 2018;30:3947. PubMed ID: 29413632 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Feger MA, Snell S, Handsfield GG, et al. Diminished foot and ankle muscle volumes in young adults with chronic ankle instability. Orthop J Sports Med. 2016;4(6):2325967116653719. PubMed ID: 27570782 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McKeon PO, Hertel J, Bramble D, Davis I. The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med. 2015;49(5):290290. PubMed ID: 24659509 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fraser JJ, Feger MA, Hertel J. Clinical commentary on midfoot and forefoot involvement in lateral ankle sprains and chronic ankle instability. Part 2: clinical considerations. Int J Sports Phys Ther. 2016;11(7):11911203. PubMed ID: 27999731

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fraser JJ, Hertel J. Effects of a 4-week intrinsic foot muscle exercise program on motor function: a preliminary randomized control trial. J Sport Rehabil. 2019;28(4):339349. PubMed ID: 29364026 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zhang X, Aeles J, Vanwanseele B. Comparison of foot muscle morphology and foot kinematics between recreational runners with normal feet and with asymptomatic over-pronated feet. Gait Posture. 2017;54:290294. PubMed ID: 28390293 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):20202028. PubMed ID: 30418471 doi:

  • 17.

    Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. Br J Sports Med. 2014;48(13):10141018. PubMed ID: 24255768 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Martin RL, Irrgang JJ, Burdett RG, Conti SF, Van Swearingen JM. Evidence of validity for the foot and ankle ability measure (FAAM). Foot Ankle Int. 2005;26(11):968983. PubMed ID: 16309613 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Carcia CR, Martin RL, Drouin JM. Validity of the foot and ankle ability measure in athletes with chronic ankle instability. J Athl Train. 2008;43(2):179183. PubMed ID: 18345343 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Donahue M, Simon J, Docherty CL. Reliability and validity of a new questionnaire created to establish the presence of functional ankle instability: the IdFAI. Athl Train Sports Health Care. 2013;5(1):3843. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hays RD, Bjorner JB, Revicki DA, Spritzer KL, Cella D. Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Qual Life Res. 2009;18(7):873880. PubMed ID: 19543809 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Woby SR, Roach NK, Urmston M, Watson PJ. Psychometric properties of the TSK-11: a shortened version of the Tampa Scale for Kinesiophobia: Pain. 2005;117(1):137144. PubMed ID: 16055269 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Godin G, Shephard RJ. Godin leisure-time exercise questionnaire. Med Sci Sports Exerc. 1997;29(6):3638.

  • 24.

    Revicki DA, Kawata AK, Harnam N, Chen W-H, Hays RD, Cella D. Predicting EuroQol (EQ-5D) scores from the patient-reported outcomes measurement information system (PROMIS) global items and domain item banks in a United States sample. Qual Life Res. 2009;18(6):783791. PubMed ID: 19472072 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: the foot posture index. Clin Biomech. 2006;21(1):8998. PubMed ID: 16182419 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Williams DS, McClay IS. Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys Ther. 2000;80(9):864871. PubMed ID: 10960934 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    McPoil TG, Vicenzino B, Cornwall MW, Collins N, Warren M. Reliability and normative values for the foot mobility magnitude: a composite measure of vertical and medial-lateral mobility of the midfoot. J Foot Ankle Res. 2009;2(1):6. PubMed ID: 19267907 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Fraser JJ, Koldenhoven R, Hertel J. Reliability of measures of ankle-foot morphology, mobility, and strength. Int J Sports Phys Ther. 2017;12(7):11341149. PubMed ID: 29234565 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hashimoto T, Sakuraba K. Assessment of effective ankle joint positioning in strength training for intrinsic foot flexor muscles: a comparison of intrinsic foot flexor muscle activity in a position intermediate to plantar and dorsiflexion with that in maximum plantar flexion using needle electromyography. J Phys Ther Sci. 2014;26(3):451454. PubMed ID: 24707106 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Battaglia PJ, Mattox R, Winchester B, Kettner NW. Non-weight-bearing and weight-bearing ultrasonography of select foot muscles in young, asymptomatic participants: a descriptive and reliability study. J Manipulative Physiol Ther. 2016;39(9):655661. PubMed ID: 27884263 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Koldenhoven RM, Fraser JJ, Saliba SA, Hertel J. Ultrasonography of gluteal and fibularis muscles during exercises in individuals with a history of lateral ankle sprain. J Athl Train. 2019;54(12):12871295. PubMed ID: 31584853 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic Press; 2013.

  • 33.

    Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. Upper Saddle River, NJ: Pearson/Prentice Hall; 2009.

    • Search Google Scholar
    • Export Citation
  • 34.

    Delahunt E, Remus A. Risk factors for lateral ankle sprains and chronic ankle instability. J Athl Train. 2019;54(6):611616. PubMed ID: 31161942 doi:

  • 35.

    Mooradian AD, Morley JE, Korenman SG. Biological actions of androgens. Endocr Rev. 1987;8(1):128. PubMed ID: 3549275 doi:

  • 36.

    Fukano M, Fukubayashi T. Gender-based differences in the functional deformation of the foot longitudinal arch. The Foot. 2012;22(1):69. PubMed ID: 21907558 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Fritz B, Schmeltzpfenning T, Plank C, Hein T, Grau S. Anthropometric influences on dynamic foot shape: measurements of plantar three-dimensional foot deformation. Footwear Sci. 2013;5(2):121129. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Pretterklieber B. Morphological characteristics and variations of the human quadratus plantae muscle. Ann Anat. 2018;216:922. PubMed ID: 29166622 doi:

  • 39.

    Moisan G, Descarreaux M, Cantin V. Effects of chronic ankle instability on kinetics, kinematics and muscle activity during walking and running: a systematic review. Gait Posture. 2017;52:381399. PubMed ID: 28063387 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 331 331 295
Full Text Views 25 25 21
PDF Downloads 9 9 9