Restrictions in Ankle Dorsiflexion Range of Motion Alter Landing Kinematics But Not Movement Strategy When Fatigued

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Ankle dorsiflexion range of motion (DF ROM) has been associated with a number of kinematic and kinetic variables associated with landing performance that increase injury risk. However, whether exercise-induced fatigue exacerbates compensatory strategies has not yet been established. Objectives: (1) Explore differences in landing performance between individuals with restricted and normal ankle DF ROM and (2) identify the effect of fatigue on compensations in landing strategies for individuals with restricted and normal ankle DF ROM. Design: Cross-sectional. Setting: University research laboratory. Patients or Other Participants: Twelve recreational athletes with restricted ankle DF ROM (restricted group) and 12 recreational athletes with normal ankle DF ROM (normal group). Main Outcome Measure(s): The participants performed 5 bilateral drop-landings, before and following a fatiguing protocol. Normalized peak vertical ground reaction force, time to peak vertical ground reaction force, and loading rate were calculated, alongside sagittal plane initial contact angles, peak angles, and joint displacement for the ankle, knee, and hip. Frontal plane projection angles were also calculated. Results: At the baseline, the restricted group landed with significantly less knee flexion (P = .005, effect size [ES] = 1.27) at initial contact and reduced peak ankle dorsiflexion (P < .001, ES = 1.67), knee flexion (P < .001, ES = 2.18), and hip-flexion (P = .033, ES = 0.93) angles. Sagittal plane joint displacement was also significantly less for the restricted group for the ankle (P < .001, ES = 1.78), knee (P < .001, ES = 1.78), and hip (P = .028, ES = 0.96) joints. Conclusions: These findings suggest that individuals with restricted ankle DF ROM should adopt different landing strategies than those with normal ankle DF ROM. This is exacerbated when fatigued, although the functional consequences of fatigue on landing mechanics in individuals with ankle DF ROM restriction are unclear.

Howe is with the Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom. North is with the School of Sport, Health and Applied Science, St Mary’s University, Twickenham, London, United Kingdom. Waldron is with the College of Engineering, Swansea University, Swansea, United Kingdom; and the School of Science and Technology, University of New England, Armidale, NSW, Australia. Bampouras is with the Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.

Howe (howel@edgehill.ac.uk) is corresponding author.
  • 1.

    Yanci J, Camara J. Bilateral and unilateral vertical ground reaction forces and leg asymmetries in soccer players. Biol Sport. 2016;33(2):179183. PubMed ID: 27274112 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Yeow C, Lee P, Goh J. Non-linear flexion relationships of the knee with the hip and ankle, and their relative postures during landing. Knee. 2011;18(5):323328. PubMed ID: 20638850 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Zhang S, Bates B, Dufek J. Contributions of lower extremity joints to energy dissipation during landings. Med Sci Sports Exerc. 2000;32(4):812819. PubMed ID: 10776901 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Blackburn J, Padua D. Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J Athl Train. 2009;44(2):174179. PubMed ID: 19295962 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30(2):261267. PubMed ID: 11912098 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Rowley M, Richards J. Increasing plantar flexion angle during landing reduces vertical ground reaction forces, loading rates and the hip’s contribution to support moment within participants. J Sports Sci. 2015;33(18):19221931. PubMed ID: 25775364 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Begalle R, Walsh M, McGrath M, Boling M, Blackburn J, Padua, D. Ankle dorsiflexion displacement during landing is associated with initial contact kinematics but not joint displacement. J Appl Biomech. 2015;31(4):205210. PubMed ID: 25734492 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hewett T, Myer G, Ford K. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299311. PubMed ID: 16423913 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dierks TA, Manal KT, Hamill J, Davis I. Lower extremity kinematics in runners with patellofemoral pain during a prolonged run. Med Sci Sports Exerc. 2011;43(4):693700. PubMed ID: 20798656 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fong C, Blackburn J, Norcross M, McGrath M, Padua D. Ankle-dorsiflexion range of motion and landing biomechanics. J Athl Train. 2011;46(1):510. PubMed ID: 21214345 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Howe LP, Bampouras TM, North J, Waldron M. Ankle dorsiflexion range of motion is associated with kinematic but not kinetic variables related to bilateral drop-landing performance at various drop heights. Hum Mov Sci. 2019;64:320328. PubMed ID: 30836206 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Malloy P, Morgan A, Meinerz C, Geiser C, Kipp K. The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):35503555. PubMed ID: 25112598 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Whitting JW, Steele JR, McGhee DE, Munro BJ. Dorsiflexion capacity affects Achilles tendon loading during drop-landings. Med Sci Sports Exerc. 2011;43(4):706713. PubMed ID: 20689446 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fousekis K, Tsepis E, Vagenas, G. Intrinsic risk factors of noncontact ankle sprains in soccer: a prospective study on 100 professional players. Am J Sports Med. 2012;40(8):18421850. PubMed ID: 22700889 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Borotikar BS, Newcomer R, Koppes R, McLean SG. Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech. 2008;23(1):8192. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Zadpoor AA, Nikooyan AA. The effects of lower-extremity muscle fatigue on the vertical ground reaction force: a meta-analysis. Proc Inst Mech Eng H. 2012;226(8):579588. PubMed ID: 23057231 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Weinhandl JT, Smith JD, Dugan EL. The effects of repetitive drop jumps on impact phase joint kinematics and kinetics. J Appl Biomech. 2011;27(2):108115. PubMed ID: 21576718 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Madigan M, Pidcoe P. Changes in landing biomechanics during a fatiguing landing activity. J Electromyogr Kinesiol. 2003;13(5):491498. PubMed ID: 12932423 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    James C, Scheuermann B, Smith M. Effects of two neuromuscular fatigue protocols on landing performance. J Electromyogr Kinesiol. 2010;20(4):667675. PubMed ID: 20006522 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rabin A, Kozol Z. Utility of the overhead squat and forward arm squat in screening for limited ankle dorsiflexion. J Strength Cond Res. 2017;31(5):12511258. PubMed ID: 27465627 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dill KE, Begalle RL, Frank BS, Zinder SM, Padua DA. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion. J Athl Train. 2014;49(6):723732. PubMed ID: 25144599 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Howe LP, Bampouras TM, North JM, Waldron M. Within-session reliability for inter-limb asymmetries in ankle dorsiflexion range of motion during the weight-bearing lunge test. Int J Sports Phys Ther. 2020;15(1):6473. PubMed ID: 32089959 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Dingenen B, Malfait B, Vanrenterghem J, Robinson M, Verschueren S, Staes F. Can two-dimensional measured peak sagittal plane excursions during drop vertical jumps help identify three-dimensional measured joint moments? Knee. 2015;22(2):7379. PubMed ID: 25575747 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Munro A, Herrington L, Carolan M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J Sport Rehabil. 2012;21(1):711. PubMed ID: 22104115 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lindenberg KM, Carcia CR. The influence of heel height on vertical ground reaction force during landing tasks in recreationally active and athletic collegiate females. Int J Sports Phys Ther. 2013;8:18. PubMed ID: 23439490

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Payton CJ. Motion analysis using video. In: Payton CJ, Bartlett RM, eds. Biomechanical Evaluation of Movement in Sport and Exercise. New York, NY: Routledge; 2007;832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Howe LP, Bampouras TM, North J, Waldron M. Reliability of two-dimensional measures associated with bilateral drop-landing performance. Mov Sport Sciences. 2020;108(108):3947. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Roewer BD, Ford KR, Myer GD, Hewett TE. The ‘impact’ of force filtering cut-off frequency on the peak knee abduction moment during landing: artefact or ‘artifiction’? Br J Sports Med. 2008;48(6):464468. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hoch M, Farwell K, Gaven S, Weinhandl J. Weight-bearing dorsiflexion range of motion and landing biomechanics in individuals with chronic ankle instability. J Athl Train. 2015;50(8):833839. PubMed ID: 26067428 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Howe LP, North JS, Waldron M, Bampouras TM. Reliability of independent kinetic variables and measures of inter-limb asymmetry associated with bilateral drop-landing performance. Int J Phys Educ Fitness Sports. 2018;7(3):3247. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc; 1988.

  • 33.

    de Boer MR, Waterlander WE, Kuijper LD, Steenhuis IH, Twisk JW. Testing for baseline differences in randomized controlled trials: an unhealthy research behavior that is hard to eradicate. Int J Behav Nutr Phys Act. 2015;12(1):4. PubMed ID: 25616598 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Zhang S, Paul J, Nantha-Aree M, et al. Empirical comparison of four baseline covariate adjustment methods in analysis of continuous outcomes in randomized controlled trials. Clin Epidemiol. 2014;6:227. PubMed ID: 25053894 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hurlbert SH, Levine RA, Utts J. Coup de grâce for a tough old bull: “statistically significant” expires. Am Statistician. 2019;73:352357. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Dowling B, McPherson AL, Paci JM. Weightbearing ankle dorsiflexion range of motion and sagittal plane kinematics during single leg drop jump landing in healthy male athletes. J Sports Med Phys Fitness. 2018;58:867874. PubMed ID: 28639442

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Boden BP, Sheehan FT, Torg JS, Hewett TE. Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg. 2010;18(9):520527. PubMed ID: 20810933 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Pollard C, Sigward S, Powers C. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech. 2010;25(2):142146. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med. 2008;42(6):394412. PubMed ID: 18539658 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Yu B, Lin C, Garrett W. Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech. 2006;21(3):297305. doi:

  • 42.

    Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24:108115. PubMed ID: 1548984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Shultz SJ, Sander TC, Kirk SE, Perrin DH. Sex differences in knee joint laxity change across the female menstrual cycle. J Sports Med Phys Fitness. 2005;45:594603. PubMed ID: 16446695

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Cesar GM, Pereira VS, Santiago PR, et al. Variations in dynamic knee valgus and gluteus medius onset timing in non-athletic females related to hormonal changes during the menstrual cycle. Knee. 2011;18(4):224230. PubMed ID: 20719520 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 331 331 77
Full Text Views 5 5 0
PDF Downloads 1 1 0