Progressive Visual Occlusion and Postural Control Responses in Individuals With and Without Chronic Ankle Instability

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

Context: Prophylactic and rehabilitative balance training is needed to maximize postural control and develop appropriate sensory organization strategies. Partially occluding vision during functional exercise may promote appropriate sensory organization strategies, but little is known about the influence of partially occluded vision on postural control in those with and without a history of musculoskeletal injury. Objective: To determine the effect of increasing levels of visual occlusion on postural control in a heterogeneous sample of those with and without chronic ankle instability (CAI). The secondary objective was to explore postural control responses to increasing levels of visual occlusion among those with unilateral and bilateral CAI relative to uninjured controls. Design: Cross-sectional. Setting: Sports medicine research laboratory. Patients or Other Participants: Twenty-five participants with unilateral CAI, 10 with bilateral CAI, and 16 participants with no history of lower extremity injury. Main Outcome Measures: All participants completed four 3-minute postural control assessments in double-limb stance under the following 4 visual conditions: (1) eyes open, (2) low occlusion, (3) high occlusion, and (4) eyes closed. Low- and high-occlusion conditions were produced using stroboscopic eyewear. Postural control outcomes included time-to-boundary minima means in the anteroposterior (TTB-AP) and mediolateral directions (TTB-ML). Repeated-measures analysis of variances tested the effects of visual condition on TTB-AP and TTB-ML. Results: Postural control under the eyes-open condition was significantly better (ie, higher) than the limited visual occlusion and eyes-closed conditions (P < .001) for TTB-AP and TTB-ML. For TTB-AP only, partially occluded vision resulted in better postural control than the eyes-closed condition (P ≤ .003). Conclusions: Partial and complete visual occlusion impaired postural control during dual-limb stance in a heterogeneous sample of those with and without CAI. Stroboscopic eyewear appears to induce postural control impairments to the same extent as complete visual occlusion in the mediolateral direction.

VanDeMark, Vander Vegt, Mihalik, and Wikstrom are with the Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. Vander Vegt and Mihalik are also with the Matthew Gfeller Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. Ford is with the Department of Population Health Science, Duke University, Durham, NC, USA. Wikstrom is also with the MOTION Science Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Wikstrom (wikstrom@unc.edu) is corresponding author.
  • 1.

    Maurer C, Mergner T, Bolha B, Hlavacka F. Vestibular, visual, and somatosensory contributions to human control of upright stance. Neurosci Lett. 2000;281(2–3):99102. PubMed ID: 10704752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88(3):10971118. PubMed ID: 12205132 doi:

  • 3.

    Paillard T. Sport-specific balance develops specific postural skills. Sports Med. 2014;44(7):10191020. doi:

  • 4.

    Paillard T. Plasticity of the postural function to sport and/or motor experience. Neurosci Biobehav Rev. 2017;72:129152. PubMed ID: 27894829 doi:

  • 5.

    Paillard T, Noé F. Effect of expertise and visual contribution on postural control in soccer. Scand J Med Sci Sports. 2006;16(5):345348. PubMed ID: 16978254 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Paillard T, Noé F, Rivière T, Marion V, Montoya R, Dupui P. Postural performance and strategy in the unipedal stance of soccer players at different levels of competition. J Athl Train. 2006;41(2):172176. PubMed ID: 16791302

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Paillard T. Relationship between sport expertise and postural skills. Front Psychol. 2019;10:1428. PubMed ID: 31293483 doi:

  • 8.

    Wang HK, Chen CH, Shiang TY, Jan MH, Lin KH. Risk-factor analysis of high school basketball-player ankle injuries: a prospective controlled cohort study evaluating postural sway, ankle strength, and flexibility. Arch Phys Med Rehabil. 2006;87(6):821825. PubMed ID: 16731218 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Oshima T, Nakase J, Kitaoka K, et al. . Poor static balance is a risk factor for non-contact anterior cruciate ligament injury. Arch Orthop Trauma Surg. 2018;138(12):17131718. PubMed ID: 30027482 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;31142(2):311319.

    • Search Google Scholar
    • Export Citation
  • 11.

    Song K, Burcal CJ, Hertel J, Wikstrom EA. Increased visual utilization in chronic ankle instability: a meta-analysis. Med Sci Sport Exer. 2016;48(10):20462056. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wikstrom EA, Song K, Pietrosimone B, Blackburn JT, Padua DA. Visual utilization during postural control in anterior cruciate ligament deficient and reconstructed patients: a systematic review and meta-analyses. Arch Phys Med Rehabil. 2017;98(10):20522065. PubMed ID: 28483655 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Claeys K, Brumagne S, Dankaerts W, Kiers H, Janssens L. Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting. Eur J Appl Physiol. 2011;111(1):115123. PubMed ID: 20824281 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sport Phys Ther. 2015;45(5):381393. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):12711288. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zech A, Hubscher M, Vogt L, Banzer W, Hansel F, Pfeifer K. Neuromuscular training for rehabilitation of sports injuries: a systematic review. Med Sci Sports Exerc. 2009;41(10):18311841. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wikstrom EA, Naik S, Lodha N, Cauraugh JH. Balance capabilities after lateral ankle trauma and intervention: a meta-analysis. Med Sci Sports Exerc. 2009;41(6):12871295. PubMed ID: 19461536 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McKeon PO, Hertel J. Systematic review of postural control and lateral ankle instability, part II: is balance training clinically effective? J Athl Train. 2008;43(3):305315. PubMed ID: 18523567 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Riva D, Bianchi R, Rocca F, Mamo C. Proprioceptive training and injury prevention in a professional men’s basketball team: a six-year prospective study. J Strength Cond Res. 2016;30(2):461475. PubMed ID: 26203850 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Song K, Rhodes E, Wikstrom EA. Balance training does not alter reliance on visual information during static stance in those with chronic ankle instability: a systematic review with meta-analysis. Sports Med. 2017;48(4):893905. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kim K-MM, Kim J-SS, Grooms DR. Stroboscopic vision to induce sensory reweighting during postural control. Grooms DR J Sport Rehabil. 2017;26(5). doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kim K-M, Kim J-S, Oh J, Grooms DR. Stroboscopic vision as a dynamic sensory reweighting alternative to the sensory organization test. J Sport Rehabil. 2021;30(1):166–172. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Groters S, Groen BE, van Cingel R, Duysens J. Double-leg stance and dynamic balance in individuals with functional ankle instability. Gait Posture. 2013;38(4):968973. PubMed ID: 23810093 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gribble PA, Delahunt E, Bleakley CM, et al. . Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the international ankle consortium. J Athl Train. 2014;49(1):121127. PubMed ID: 24377963 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hertel J, Olmsted-Kramer LC. Deficits in time-to-boundary measures of postural control with chronic ankle instability. Gait Posture. 2007;25(1):3339. PubMed ID: 16446093 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hertel J, Olmsted-Kramer LC, Challis JH. Time-to-boundary measures of postural control during single leg quiet standing. J Appl Biomech. 2006;22(1):6773. PubMed ID: 16760569 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wikstrom EA, Naik S, Lodha N, Cauraugh JH. Bilateral balance impairments after lateral ankle trauma: a systematic review and meta-analysis. Gait Posture. 2010;31(4):407414. PubMed ID: 20303759 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141(1):218. PubMed ID: 21823805 doi:

  • 29.

    Burcal CJ, Sandrey MA, Hubbard-Turner T, McKeon PO, Wikstrom EA. Predicting dynamic balance improvements following 4-weeks of balance training in chronic ankle instability patients. J Sci Med Sport. 2019;22(5):538543. PubMed ID: 30501956 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wikstrom EA, McKeon PO. Predicting manual therapy treatment success in patients with chronic ankle instability: improving self-reported function. J Athl Train. 2017;52(4):325331. PubMed ID: 28290704 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tarantola J, Nardone A, Tacchini E, Schieppati M. Human stance stability improves with the repetition of the task: effect of foot position and visual condition. Neurosci Lett. 1997;228(2):7578. PubMed ID: 9209102 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Slobounov SM, Slobounova ES, Newell KM. Virtual time-to-collision and human postural control. J Mot Behav. 1997;29(3):263281. PubMed ID: 12453785 doi:

  • 33.

    Terada M, Kosik K, Johnson N, Gribble P. Altered postural control variability in older-aged individuals with a history of lateral ankle sprain. Gait Posture. 2018;60:8892. PubMed ID: 29169097 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 340 340 91
Full Text Views 22 22 5
PDF Downloads 21 21 6