Mechanisms of Arthrogenic Muscle Inhibition

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

Context: Arthrogenic muscle inhibition (AMI) continues to be a limiting factor in joint rehabilitation as the inability to volitionally activate muscle significantly dampens recovery. New evidence acquired at higher brain centers and in clinical populations continues to reshape our perspective of what AMI is and how to treat it. This review aims to stimulate discussion about the far-reaching effects of AMI by exploring the interconnected pathways by which it evolves. Objectives: To discuss how reflexive inhibition can lead to adaptations in brain activity, to illustrate how changes in descending motor pathways limit our ability to contract muscle following injury, and to summarize the emerging literature on the wide-reaching effects of AMI on other interconnected systems. Data Sources: The databases PubMed, SPORTDiscus, and Web of Science were searched for articles pertaining to AMI. Reference lists from appropriate articles were cross-referenced. Conclusion: AMI is a sequential and cumulative neurological process that leads to complex clinical impairments. Originating with altered afferent information arising from an injured joint, patients experience changes in afferent information, reflexive muscle inhibition, deficiencies in somatosensation, neuroplastic compensations in higher brain centers, and ultimately decreased motor output to the muscle surrounding the joint. Other aspects of clinical function, like muscle structure and psychological responses to injury, are also impaired and influenced by AMI. Removing, or reducing, AMI should continue to be a focus of rehabilitation programs to assist in the optimization of health after joint injury.

The authors are with the School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.

A.S. Lepley (alepley@umich.edu) is corresponding author.
  • 1.

    National Center for Health Statistics. National Health Interview, Adult Sample. 2015. http://www.cdc.gov/nchs/nhis/data-questionnaires-documentation.htm.

    • Search Google Scholar
    • Export Citation
  • 2.

    Pietrosimone B, Lepley AS, Harkey MS, et al. Quadriceps strength predicts self-reported function post-ACL reconstruction. Med Sci Sports Exerc. 2016;48(9):16711677. PubMed ID: 27054675 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lepley LK. Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health. 2015;7(3):231238. PubMed ID: 26131300 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lisee C, Lepley AS, Birchmeier T, O’Hagan K, Kuenze C. Quadriceps strength and volitional activation after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports health. 2019;11(2):163179. PubMed ID: 30638441 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sport Med. 2008;27(3):405424. doi:

  • 6.

    Hopkins J, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135159. doi:

  • 7.

    Stokes M, Young A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci. 1984;67(1):714. doi:

  • 8.

    Palmer I. Pathophysiology of the medical ligament of the knee joint. Acta Chir Scand. 1958;115(4):312318. PubMed ID: 13582512

  • 9.

    Solomonow M, Baratta R, Zhou BH, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207213. PubMed ID: 3618871 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010;40(3):250266. PubMed ID: 19954822 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ferrell WR. The effect of acute joint distension on mechanoreceptor discharge in the knee of the cat. Q J Exp Physiol. 1987;72(4):493499. PubMed ID: 2447602 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wood L, Ferrell WR. Response of slowly adapting articular mechanoreceptors in the cat knee joint to alterations in intra-articular volume. Ann Rheum Dis. 1984;43(2):327332. PubMed ID: 6712305 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Iles JF, Stokes M, Young A. Reflex actions of knee joint afferents during contraction of the human quadriceps. Clin Physiol. 1990;10(5):489500. PubMed ID: 2245598 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Palmieri-Smith RM, Villwock M, Downie B, Hecht G, Zernicke R. Pain and effusion and quadriceps activation and strength. J Athl Train. 2013;48(2):186191. PubMed ID: 23672382 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopkins JT, Ingersoll CD, Krause BA, Edwards JE, Cordova ML. Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med Sci Sport Exerc. 2001;33(1):123126. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Lepley AS, Bahhur NO, Murray AM, Pietrosimone BG. Quadriceps corticomotor excitability following an experimental knee joint effusion. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):10101017. PubMed ID: 24326780 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Palmieri RM, Ingersoll CD, Cordova ML, Kinzey SJ, Stone MB, Krause BA. The effect of a simulated knee joint effusion on postural control in healthy subjects. Arch Phys Med Rehab. 2003;84(7):10761079. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Palmieri RM, Ingersoll CD, Hoffman MA, et al. Arthrogenic muscle response to a simulated ankle joint effusion. Br J Sports Med. 2004;38(1):2630. PubMed ID: 14751941 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Torry MR, Decker MJ, Viola RW, O’Connor DD, Steadman JR. Intra-articular knee joint effusion induces quadriceps avoidance gait patterns. Clin Biomech. 2000;15(3):147159. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins JT. Knee joint effusion and cryotherapy alter lower chain kinetics and muscle activity. J Athl Training. 2006;41(2):177184.

  • 21.

    Torry MR, Decker MJ, Millett PJ, Steadman JR, Sterett WI. The effects of knee joint effusion on quadriceps electromyography during jogging. J Sports Sci Med. 2005;4(1):18. PubMed ID: 24431955

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    McNair PJ, Marshall RN, Maguire K. Swelling of the knee joint: effects of exercise on quadriceps muscle strength. Arch Phys Med Rehabil. 1996;77(9):896899. PubMed ID: 8822681 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rice D, McNair PJ, Dalbeth N. Effects of cryotherapy on arthrogenic muscle inhibition using an experimental model of knee swelling. Arthritis Rheum. 2009;61(1):7883. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Palmieri-Smith RM, Kreinbrink J, Ashton-Miller JA, Wojtys EM. Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sport Med. 2007;35(8):12691275. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pietrosimone B, Lepley AS, Murray AM, Thomas AC, Bahhur NO, Schwartz TA. Changes in voluntary quadriceps activation predict changes in muscle strength and gait biomechanics following knee joint effusion. Clin Biomech. 2014;29(8):923929. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Grigg P, Harrigan EP, Fogarty KE. Segmental reflexes mediated by joint afferent neurons in cat knee. J Neurophysiol. 1978;41(1):914. PubMed ID: 621548 doi:

  • 27.

    Beryl Harding AE. An investigation into the cause of arthritic muscular atrophy. Lancet. 1929;213(5505):433434. doi:

  • 28.

    Gandevia SC, Macefield G, Burke D, McKenzie DK. Voluntary activation of human motor axons in the absence of muscle afferent feedback: the control of the deafferented hand. Brain. 1990;113(5):15631581. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hart JM, Bessette M, Choi L, Hogan MV, Diduch D. Sensory response following knee joint damage in rabbits. BMC Musculoskelet Disord. 2014;15(1):139. PubMed ID: 24766654 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Klykken LW, Pietrosimone BG, Kim KM, Ingersoll CD, Hertel J. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain. J Athl Train. 2011;46(3):263269. PubMed ID: 21669095 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rosenthal MD, Moore JH, Stoneman PD, DeBerardino TM. Neuromuscular excitability changes in the vastus medialis following anterior cruciate ligament reconstruction. Electromyogr Clin Neurophysiol. 2009;49(1):4351. PubMed ID: 19280799

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):665674. PubMed ID: 25844855 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828839. PubMed ID: 25693627 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kim KM, Ingersoll CD, Hertel J. Decreased motoneuron pool excitability of the peroneals and soleus with chronic ankle instability. Med Sci Sport Exerc. 2010;42(5):1212. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Davi SM, Lepley AS, Denegar CR, DiStefano LJ, Edgar CM, Lepley LK. Quadriceps inhibition after naturally occurring patellar tendon damage and pain. J Athl Train. 2020;55(6):608614. PubMed ID: 32348153 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Lepley LK, Wojtys EM, Palmieri-Smith RM. Does concomitant meniscectomy or meniscal repair affect the recovery of quadriceps function post-ACL reconstruction? Knee Surg Sports Traumatol Arthrosc. 2015;23(9):27562761. PubMed ID: 24906435 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Zarzycki R, Morton SM, Charalambous CC, Marmon A, Snyder-Mackler L. Corticospinal and intracortical excitability differ between athletes early after ACLR and matched controls. J Orthop Res. 2018;36(11):29412948. PubMed ID: 29846002 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Zarzycki R, Morton SM, Charalambous CC, Pietrosimone B, Williams GN, Snyder-Mackler L. Examination of corticospinal and spinal reflexive excitability during the course of postoperative rehabilitation after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2020;50(9):516522. PubMed ID: 32741329 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rodriguez KM, Palmieri-Smith RM, Krishnan C. How does anterior cruciate ligament reconstruction affect the functioning of the brain and spinal cord? A systematic review with meta-analysis. J Sport Health Sci. 2020;10(2):172181. PubMed ID: 32707098 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Rush JL, Glaviano NR, Norte GE. Assessment of quadriceps corticomotor and spinal-reflexive excitability in individuals with a history of anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2021;51(5):961990. PubMed ID: 33400217 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Tayfur B, Charuphongsa C, Morrissey D, Miller SC. Neuromuscular function of the knee joint following knee injuries: does it ever get back to normal? A systematic review with meta-analyses. Sports Med. 2021;51(2):321338. PubMed ID: 33247378 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Harkey MS, Luc-Harkey BA, Lepley AS, et al. Persistent muscle inhibition after anterior cruciate ligament reconstruction: role of reflex excitability. Med Sci Sports Exerc. 2016;48(12):23702377. PubMed ID: 27434085 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kuenze CM, Hertel J, Weltman A, Diduch D, Saliba SA, Hart JM. Persistent neuromuscular and corticomotor quadriceps asymmetry after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(3):303312. PubMed ID: 25622244 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. The Knee. 2014;21(3):736742. PubMed ID: 24618459 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Lepley AS, Grooms DR, Burland JP, Davi SM, Kinsella-Shaw JM, Lepley LK. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res. 2019;237(5):12671278. PubMed ID: 30852644 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Norte GE, Hertel J, Saliba SA, Diduch DR, Hart JM. Quadriceps neuromuscular function in patients with anterior cruciate ligament reconstruction with or without knee osteoarthritis: a cross-sectional study. J Athl Train. 2018;53(5):475485. PubMed ID: 29893603 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Konishi Y, Fukubayashi T, Takeshita D. Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2002;12(6):371375. PubMed ID: 12453165 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Konishi Y, Fukubayashi T, Takeshita D. Possible mechanism of quadriceps femoris weakness in patients with ruptured anterior cruciate ligament. Med Sci Sports Exerc. 2002;34(9):14141418. PubMed ID: 12218732 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    McNair P, Rice D, Lewis G. Gamma loop pathway dysfunction in osteoarthritic knees. J Sci Med Sport. 2010;13:e20. doi:

  • 50.

    Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381393. PubMed ID: 25579692 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Urbach D, Nebelung W, Weiler HT, Awiszus F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc. 1999;31(12):16911696. PubMed ID: 10613416 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Mirkov DM, Knezevic OM, Maffiuletti NA, Kadija M, Nedeljkovic A, Jaric S. Contralateral limb deficit after ACL-reconstruction: an analysis of early and late phase of rate of force development. J Sports Sci. 2017;35(5):435440. PubMed ID: 27043874 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P. Clinical and neurophysiological abnormalities before and after reconstruction of the anterior cruciate ligament of the knee. Acta Neurol Scand. 1999;99(5):303307. PubMed ID: 10348160 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Ochi M, Iwasa J, Uchio Y, Adachi N, Sumen Y. The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am. 1999;81(5):902906. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Rebmann D, Mayr HO, Schmal H, Hernandez Latorre S, Bernstein A. Immunohistochemical analysis of sensory corpuscles in human transplants of the anterior cruciate ligament. J Orthop Surg Res. 2020;15(1):270. PubMed ID: 32680550 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Courtney C, Rine RM, Kroll P. Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture. 2005;22(1):6974. PubMed ID: 15996595 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Courtney CA, Rine RM. Central somatosensory changes associated with improved dynamic balance in subjects with anterior cruciate ligament deficiency. Gait Posture. 2006;24(2):190195. PubMed ID: 16181781 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Courtney CA, Durr RK, Emerson-Kavchak AJ, Witte EO, Santos MJ. Heightened flexor withdrawal responses following ACL rupture are enhanced by passive tibial translation. Clin Neurophysiol. 2011;122(5):10051010. PubMed ID: 20875770 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Munn J, Sullivan SJ, Schneiders AG. Evidence of sensorimotor deficits in functional ankle instability: a systematic review with meta-analysis. J Sci Med Sport. 2010;13(1):212. PubMed ID: 19442581 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Gokeler A, Benjaminse A, Hewett TE, et al. Proprioceptive deficits after ACL injury: are they clinically relevant? Br J Sports Med. 2012;46(3):180192. PubMed ID: 21511738 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Baumeister J, Reinecke K, Schubert M, Weiss M. Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res. 2011;29(9):13831389. PubMed ID: 21437965 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Baumeister J, Reinecke K, Weiss M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scand J Med Sci Sports. 2008;18(4):473484. PubMed ID: 18067525 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Needle AR, Swanik CB, Schubert M, et al. Decoupling of laxity and cortical activation in functionally unstable ankles during joint loading. Eur J Appl Physiol. 2014;114(10):21292138. PubMed ID: 24957415 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    An YW, DiTrani Lobacz A, Lehmann T, et al. Neuroplastic changes in anterior cruciate ligament reconstruction patients from neuromechanical decoupling. Scand J Med Sci Sports. 2019;29(2):251258. PubMed ID: 30326547 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Kapreli E, Athanasopoulos S, Gliatis J, et al. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12):24192426. PubMed ID: 19940314 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Grooms DR, Page SJ, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10):10051010. PubMed ID: 26509775 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Criss CR, Onate JA, Grooms DR. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: a task-based functional connectivity analysis. Neurosci Lett. 2020;730:134985. PubMed ID: 32380143 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):12711288. PubMed ID: 28005191 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Kapreli E, Athanasopoulos S. The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses. 2006;67(3):645650. PubMed ID: 16698187 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Neto T, Sayer T, Theisen D, Mierau A. Functional brain plasticity associated with ACL injury: a scoping review of current evidence. Neural Plast. 2019;2019:1. PubMed ID: 31949428 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis. Muscle Nerve. 2015;51(3):327332. PubMed ID: 25255714 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Scheurer SA, Sherman DA, Glaviano NR, Ingersoll CD, Norte GE. Corticomotor function is associated with quadriceps rate of torque development in individuals with ACL surgery. Exp Brain Res. 2020;238(2):283294. PubMed ID: 31897518 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Terada M, Kosik KB, McCann RS, Drinkard C, Gribble PA. Corticospinal activity during a single-leg stance in people with chronic ankle instability. J Sport Health Sci. 2020;S2095-2546(20)30115-0. PubMed ID: 32866712 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Pietrosimone BG, Gribble PA. Chronic ankle instability and corticomotor excitability of the fibularis longus muscle. J Athl Train. 2012;47(6):621626. PubMed ID: 23182009 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Kittelson AJ, Thomas AC, Kluger BM, Stevens-Lapsley JE. Corticospinal and intracortical excitability of the quadriceps in patients with knee osteoarthritis. Exp Brain Res. 2014;232(12):39913999. PubMed ID: 25183161 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Luc-Harkey BA, Harkey MS, Pamukoff DN, et al. Greater intracortical inhibition associates with lower quadriceps voluntary activation in individuals with ACL reconstruction. Exp Brain Res. 2017;235(4):11291137. PubMed ID: 28144695 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3):180189. PubMed ID: 27817301 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Lepley AS, Ly MT, Grooms DR, Kinsella-Shaw JM, Lepley LK. Corticospinal tract structure and excitability in patients with anterior cruciate ligament reconstruction: a DTI and TMS study. Neuroimage Clin. 2020;25:102157. PubMed ID: 31901791 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Terada M, Johnson N, Kosik K, Gribble P. Quantifying brain white matter microstructure of people with lateral ankle sprain. Med Sci Sports Exerc. 2019;51(4):640646. PubMed ID: 30480617 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Pijnenburg M, Caeyenberghs K, Janssens L, et al. Microstructural integrity of the superior cerebellar peduncle is associated with an impaired proprioceptive weighting capacity in individuals with non-specific low back pain. PLoS One. 2014;9(6):e100666. PubMed ID: 24949796 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Lewis GN, Parker RS, Sharma S, Rice DA, McNair PJ. Structural brain alterations before and after total knee arthroplasty: a longitudinal assessment. Pain Med. 2018;19(11):21662176. PubMed ID: 29917139 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316329. PubMed ID: 17599699 doi:

  • 83.

    Manini TM, Hong SL, Clark BC. Aging and muscle: a neuron’s perspective. Curr Opin Clin Nutr Metab Care. 2013;16(1):2126. PubMed ID: 23222705 doi:

  • 84.

    Li Y, Lee Y, Thompson WJ. Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J Neurosci. 2011;31(42):1491014919. PubMed ID: 22016524 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Noehren B, Andersen A, Hardy P, et al. Cellular and morphological alterations in the vastus lateralis muscle as the result of ACL injury and reconstruction. J Bone Joint Surg Am. 2016;98(18):15411547. PubMed ID: 27655981 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Leszczynski EC, Kuenze C, Brazier B, Visker J, Ferguson DP. The effect of ACL reconstruction on involved and contralateral limb vastus lateralis morphology and histology: a pilot study. J Knee Surg. 2021;34(5):533537. PubMed ID: 31569259 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Fry CS, Johnson DL, Ireland ML, Noehren B. ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. J Orthop Res. 2017;35(9):18761885. PubMed ID: 27935172 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Peck BD, Brightwell CR, Johnson DL, Ireland ML, Noehren B, Fry CS. Anterior cruciate ligament tear promotes skeletal muscle myostatin expression, fibrogenic cell expansion, and a decline in muscle quality. Am J Sports Med. 2019;47(6):13851395. PubMed ID: 30995070 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    MacLennan RJ, Ogilvie D, McDorman J, et al. The time course of neuromuscular impairment during short-term disuse in young women. Physiol Rep. 2021;9(1):e14677. PubMed ID: 33426809 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Clark BC, Taylor JL, Hoffman RL, Dearth DJ, Thomas JS. Cast immobilization increases long-interval intracortical inhibition. Muscle Nerve. 2010;42(3):363372. PubMed ID: 20544941 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Liepert J, Tegenthoff M, Malin JP. Changes of cortical motor area size during immobilization. Electroencephalogr Clin Neurophysiol. 1995;97(6):382386. PubMed ID: 8536589 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Clark BC, Issac LC, Lane JL, Damron LA, Hoffman RL. Neuromuscular plasticity during and following 3 wk of human forearm cast immobilization. J Appl Physiol. 2008;105(3):868878. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Lepley LK, Davi SM, Burland JP, Lepley AS. Muscle atrophy after ACL injury: implications for clinical practice. Sports Health. 2020;12(6):579586. PubMed ID: 32866081 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Ardern CL, Kvist J, Webster KE. Psychological aspects of anterior cruciate ligament injuries. Oper Tech Sports Med. 2015;24(1):7783. doi:

  • 95.

    Logerstedt D, Di Stasi S, Grindem H, et al. Self-reported knee function can identify athletes who fail return-to-activity criteria up to 1 year after anterior cruciate ligament reconstruction: a Delaware-Oslo ACL cohort study. J Orthop Sports Phys Ther. 2014;44(12):914923. PubMed ID: 25347228 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Ross MD. The relationship between functional levels and fear-avoidance beliefs following anterior cruciate ligament reconstruction. J Orthop Traumatol. 2010;11(4):237243. PubMed ID: 21116674 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Waddell G, Newton M, Henderson I, Somerville D, Main CJ. A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 1993;52(2):157168. PubMed ID: 8455963 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Ardern CL. Anterior cruciate ligament reconstruction-not exactly a one-way ticket back to the preinjury level: a review of contextual factors affecting return to sport after surgery. Sports Health. 2015;7(3):224230. PubMed ID: 26131299 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Langford JL, Webster KE, Feller JA. A prospective longitudinal study to assess psychological changes following anterior cruciate ligament reconstruction surgery. Br J Sports Med. 2009;43(5):377378. PubMed ID: 19019910 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Tjong VK, Murnaghan ML, Nyhof-Young JM, Ogilvie-Harris DJ. A qualitative investigation of the decision to return to sport after anterior cruciate ligament reconstruction: to play or not to play. Am J Sports Med. 2014;42(2):336342. PubMed ID: 24197615 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Kori S, Miller R, Todd D. Kineisiophobia: a new view of chronic pain behavior. Pain Manag. 1990;3(1):3543.

  • 102.

    Burland JP, Toonstra J, Werner JL, Mattacola CG, Howell DM, Howard JS. Decision to return to sport after anterior cruciate ligament reconstruction, part I: a qualitative investigation of psychosocial factors. J Athl Train. 2018;53(5):452463. PubMed ID: 29505304 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Burland JP, Lepley AS, Cormier M, DiStefano LJ, Arciero R, Lepley LK. Learned helplessness after anterior cruciate ligament reconstruction: an altered neurocognitive state? Sports Med. 2019;49(5):647657. PubMed ID: 30659498 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Kim Y, Perova Z, Mirrione MM, et al. Whole-brain mapping of neuronal activity in the learned helplessness model of depression. Front Neural Circuits. 2016;10:3. PubMed ID: 26869888 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4081 4081 2029
Full Text Views 147 147 110
PDF Downloads 243 243 180