Difference of Hamstring Activity Between Bilateral and Unilateral Nordic Hamstring Exercises With a Sloped Platform

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

Context: This study aimed to examine the differences in electromyographic (EMG) activity of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles, break-point angle (BPA), and the angle at peak BFlh EMG activity between bilateral and unilateral Nordic hamstring exercise (NHE) on a sloped platform. Design: This study was designed as a case-control study. Methods: Fourteen men participated in the study. The participants initially performed maximum voluntary isometric contraction (MVIC) on the prone leg curl to normalize the peak hamstring EMG amplitude as the %MVIC. Then, participants were randomized to perform the following 3 variations of NHE: bilateral (N40) or unilateral (N40U) NHE with a platform angle of 40°, and unilateral NHE with a platform angle of 50° (N50U). The EMG activities of the BFlh and ST and the knee flexion angle during the NHE variations were recorded to calculate the EMG activity of the BFlh and ST in terms of the %MVIC, the angle at peak BFlh EMG, and BPA. Results: The BFlh %MVIC was significantly higher in N40U (P < .05) and N50U (P < .05) than in N40. A significant difference in BFlh %MVIC and ST %MVIC was observed between N40U (P < .05) and N50U (P < .05). The mean values of BPA and the angle at peak BFlh EMG were <30° for all NHE variations. Conclusions: In the late swing phase of high-speed running, BFlh showed higher EMG activity; thus, unilateral NHE may be a specific hamstring exercise for hamstring injury prevention.

Soga and Keerasomboon are with the Graduate School of Sport Sciences, Waseda University, Tokyo, Japan. Akiyama and Hirose are with the Faculty of Sport Sciences, Waseda University, Tokyo, Japan.

Hirose (toitsu_hirose@waseda.jp) is corresponding author.
  • 1.

    Crema MD, Jarraya M, Engebretsen L, et al. Imaging-detected acute muscle injuries in athletes participating in the Rio de Janeiro 2016 Summer Olympic Games. Br J Sports Med. 2018;52(7):460464. PubMed ID: 29217532 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Wangensteen A, Tol JL, Witvrouw E, et al. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of mri-confirmed reinjuries. Am J Sports Med. 2016;44(8):21122121. PubMed ID: 27184543 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Askling CM, Tengvar M, Tarassova O, Thorstensson A. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2014;48(7):532539. PubMed ID: 24620041 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953959. PubMed ID: 23536466 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Danielsson A, Horvath A, Senorski C, et al. The mechanism of hamstring injuries—a systematic review. BMC Musculoskelet Disord. 2020;21(1):641. PubMed ID: 32993700 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Higashihara A, Ono T, Kubota J, Okuwaki T, Fukubayashi T. Functional differences in the activity of the hamstring muscles with increasing running speed. J Sports Sci. 2010;28(10):10851092. PubMed ID: 20672221 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Thelen DG, Chumanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sports Exerc. 2005;37(11):19311938. PubMed ID: 16286864 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? part I: a critical review of the literature. J Sports Sci. 2017;35(23):23132321. PubMed ID: 27937671 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: implications for exercise. J Sports Sci. 2017;35(23):23222333. PubMed ID: 27935419 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lau WY, Blazevich AJ, Newton MJ, Wu SS, Nosaka K. Reduced muscle lengthening during eccentric contractions as a mechanism underpinning the repeated-bout effect. Am J Physiol Regul Integr Comp Physiol. 2015;308(10):879886. PubMed ID: 25810385 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Higashihara A, Nagano Y, Ono T, Fukubayashi T. Relationship between the peak time of hamstring stretch and activation during sprinting. Eur J Sport Sci. 2016;16(1):3641. PubMed ID: 25360992 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013;43(12):12071215. PubMed ID: 24062275 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53(21):13621370. PubMed ID: 30808663 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lee JWY, Cai MJ, Yung PSH, Chan KM. Reliability, validity, and sensitivity of a novel smartphone-based eccentric hamstring strength test in professional football players. Int J Sports Physiol Perform. 2018;13(5):620624. PubMed ID: 29283704 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sarabon N, Marusic J, Markovic G, Kozinc Z. Kinematic and electromyographic analysis of variations in Nordic hamstring exercise. PLoS One. 2019;14(10):e0223437. PubMed ID: 31644582 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sconce E, Heller B, Maden-Wilkinson T, Hamilton N. Development of a novel nordic hamstring exercise device to measure and modify the knee flexors’ torque-length relationship. Front Sports Act Living. 2021;3:629606. PubMed ID: 33718867 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Soga T, Nishiumi D, Furusho A, Akiyama K, Hirose N. Effect of different slopes of the lower leg during the nordic hamstring exercise on hamstring electromyography activity. J Sports Sci Med. 2021;20(2):216221. PubMed ID: 33948099 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ditroilo M, De Vito G, Delahunt E. Kinematic and electromyographic analysis of the Nordic Hamstring Exercise. J Electromyogr Kinesiol. 2013;23(5):11111118. PubMed ID: 23809430 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kuki S, Yoshida T, Okudaira M, Konishi Y, Ohyama-Byun K, Tanigawa S. Force generation and neuromuscular activity in multi-joint isometric exercises: comparison between unilateral and bilateral stance. J Phys Fitness Sports Med. 2018;7(5):289296. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    McCurdy K, O’Kelley E, Kutz M, Langford G, Ernest J, Torres M. Comparison of lower extremity EMG between the 2-leg squat and modified single-leg squat in female athletes. J Sport Rehabil. 2010;19(1):5770. PubMed ID: 20231745 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Skarabot J, Cronin N, Strojnik V, Avela J. Bilateral deficit in maximal force production. Eur J Appl Physiol. 2016;116(11–12):20572084. PubMed ID: 27582260 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hirose N, Tsuruike M, Higashihara A. Biceps femoris muscle is activated by performing nordic hamstring exercise at a shallow knee flexion angle. J Sports Sci Med. 2021;20(2):275283. PubMed ID: 34211320 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kellis E, Galanis N, Kapetanos G, Natsis K. Architectural differences between the hamstring muscles. J Electromyogr Kinesiol. 2012;22(4):520526. PubMed ID: 22564790 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bourne MN, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):10211028. PubMed ID: 27467123 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Nishida S, Tomoto T, Maehara K, Miyakawa S. Acute effect of low-intensity eccentric exercise on angle of peak torque in subjects with decreased hamstring flexibility. Int J Sports Phys Ther. 2018;13(5):890895. PubMed ID: 30276021 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. PubMed ID: 11018445 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lee JWY, Li C, Yung PSH, Chan KM. The reliability and validity of a video-based method for assessing hamstring strength in football players. J Exerc Sci Fit. 2017;15(1):1821. PubMed ID: 29541126 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hegyi A, Lahti J, Giacomo JP, Gerus P, Cronin NJ, Morin JB. Impact of hip flexion angle on unilateral and bilateral nordic hamstring exercise torque and high-density electromyography activity. J Orthop Sports Phys Ther. 2019;49(8):584592. PubMed ID: 30913969 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sconce E, Jones P, Turner E, Comfort P, Graham-Smith P. The validity of the nordic hamstring lower for a field-based assessment of eccentric hamstring strength. J Sport Rehabil. 2015;24(1):1320. PubMed ID: 25606859 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 749 749 749
Full Text Views 10 10 10
PDF Downloads 14 14 14