Mental Fatigue Uniquely Influences Drop Landing Biomechanics for Individuals With a Concussion History

in Journal of Sport Rehabilitation

Click name to view affiliation

Eric J. ShumskiDepartment of Kinesiology, California State University—Fullerton, Fullerton, CA, USA
UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, GA, USA

Search for other papers by Eric J. Shumski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5574-0071*
,
Tricia M. KasamatsuDepartment of Kinesiology, California State University—Fullerton, Fullerton, CA, USA

Search for other papers by Tricia M. Kasamatsu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6911-6955
,
Kathleen S. WilsonDepartment of Kinesiology, California State University—Fullerton, Fullerton, CA, USA

Search for other papers by Kathleen S. Wilson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7179-749X
, and
Derek N. PamukoffSchool of Kinesiology, Western University, London, ON, Canada

Search for other papers by Derek N. Pamukoff in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7636-3164
Restricted access

Context: Induced mental fatigue negatively impacts sport performance and neurocognition. However, it is unclear how induced mental fatigue influences landing biomechanics. The purpose of this study was to examine the influence of mental fatigue on drop landing biomechanics in individuals with and without a concussion history. Design: Crossover design. Methods: Forty-eight (24 per group) recreationally active individuals were matched on age (±3 y), sex, and body mass index (±1 kg/m2). All participants completed an experimental (30-min Stroop task) and control (30-min reading magazines) intervention on separate days separated by a minimum of 24 hours. Drop landings were performed before and after both interventions. Outcomes included peak vertical ground reaction force (vGRF), vertical loading rate (VLR), knee flexion angle, knee abduction angle, external knee flexion moment, external knee abduction moment, and initial ground contact knee flexion and knee abduction angles. Separate 2 (group) × 2 (intervention) between-within analyses of covariance compared drop landing outcomes. Each group’s average pre-Stroop and premagazine outcomes were covariates. Results: There was a significant interaction for vGRF (P = .033, ηp2=.097) and VLR (P = .0497, ηp2=.083). The vGRF simple effects were not statistically significantly (P range = .052–.325). However, individuals with a concussion history displayed a medium effect size for greater vGRF post-Stroop compared with their own postmagazine vGRF (mean difference (95% confidence interval [95% CI] = 0.163 (–0.002 to 0.327) bodyweight (BW), p = .052, ηp2=.081. In contrast, the control group displayed a small effect size (mean difference [95% CI] = 0.095 [–0.069 to 0.259] BW, p = .251, ηp2=.029). Individuals with a concussion history displayed greater VLR post-Stroop compared with controls (mean difference [95% CI], 26.29 [6.19 to 46.40] BW/s, P = .012, ηp2=.134) and their own postmagazine values (mean difference [95% CI] = 32.61 [7.80 to 57.42] BW/s, p = .011, ηp2=.135). Conclusion: Mental fatigue leads to greater VLR for individuals with a concussion history. Athletic competition and activities of daily living can increase mental fatigue. Training programs may seek to teach mental fatigue reducing strategies to athletes with a concussion history.

Supplementary Materials

    • Supplementary Figure S1 (pdf 66 KB)
    • Supplementary Table S1 (pdf 207 KB)
    • Supplementary Table S2 (pdf 56 KB)
    • Supplementary Table S3 (pdf 51 KB)
  • Collapse
  • Expand
  • 1.

    McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838847. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bin Zahid A, Hubbard ME, Lockyer J, et al. Eye tracking as a biomarker for concussion in children. Clin J Sport Med. 2020;30(5):433443. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lempke LB, Howell DR, Eckner JT, Lynall RC. Examination of reaction time deficits following concussion: a systematic review and meta-analysis. Sports Med. 2020;50(7):13411359. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sosnoff JJ, Broglio SP, Shin S, Ferrara MS. Previous mild traumatic brain injury and postural-control dynamics. J Athl Train. 2011;46(1):8591. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585589. doi:

  • 6.

    De Beaumont L, Théoret H, Mongeon D, et al. Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood. Brain. 2009;132(3):695708. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106(3):857864. PubMed ID: 19131473

    • Search Google Scholar
    • Export Citation
  • 8.

    Boksem MA, Meijman TF, Lorist MM. Effects of mental fatigue on attention: an ERP study. Brain Res Cogn Brain Res. 2005;25(1):107116. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Xiao Y, Ma F, Lv Y, et al. Sustained attention is associated with error processing impairment: evidence from mental fatigue study in four-choice reaction time task. PLoS One. 2015;10(3):e0117837. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Rozand V, Lebon F, Papaxanthis C, Lepers R. Effect of mental fatigue on speed-accuracy trade-off. Neuroscience. 2015;297:219230. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhao C, Zhao M, Liu J, Zheng C. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid Anal Prev. 2012;45:8390. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Fortes L, Lima-Junior D, Nascimento-Júnior J, Costa E, Matta M, Ferreira M. Effect of exposure time to smartphone apps on passing decision-making in male soccer athletes. Psychol Sport Exerc. 2019;44:3541. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Herman DC, Zaremski JL, Vincent HK, Vincent KR. Effect of neurocognition and concussion on musculoskeletal injury risk. Curr Sports Med Rep. 2015;14(3):194199. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943948. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wilkerson GB. Neurocognitive reaction time predicts lower extremity sprains and strains. Int J Athl Ther Train. 2012;17(6):49. doi:

  • 16.

    Schatz P, Zillmer EA. Computer-based assessment of sports-related concussion. Appl Neuropsychol. 2003;10(1):4247. doi:

  • 17.

    McPherson AL, Shirley MB, Schilaty ND, Larson DR, Hewett TE. Effect of a concussion on anterior cruciate ligament injury risk in a general population. Sports Med. 2020;50(6):12031210. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Dubose DF, Herman DC, Jones DL, et al. Lower extremity stiffness changes after concussion in collegiate football players. Med Sci Sports Exerc. 2017;49(1):167172. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lapointe AP, Nolasco LA, Sosnowski A, et al. Kinematic differences during a jump cut maneuver between individuals with and without a concussion history. Int J Psychophysiol. 2018;132:9398. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Avedesian JM, Covassin T, Dufek JS. Landing biomechanics in adolescent athletes with and without a history of sports-related concussion. J Appl Biomech. Published online July 31, 2020. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Aerts I, Cumps E, Verhagen E, Verschueren J, Meeusen R. A systematic review of different jump-landing variables in relation to injuries. J Sports Med Phys Fitness. 2013;53(5):509519. PubMed ID: 23903531

    • Search Google Scholar
    • Export Citation
  • 22.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clin Biomech. 2011;26(1):2328. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Iverson GL, Caccese JB, Merz ZC, Büttner F, Terry DP. Age of first exposure to football is not associated with later-in-life cognitive or mental health problems. Front Neurol. 2021;12:647314. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Avedesian JM, Covassin T, Baez S, Nash J, Nagelhout E, Dufek JS. Relationship between cognitive performance and lower extremity biomechanics: implications for sports-related concussion. Orthop J Sports Med. 2021;9(8):23259671211032250. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition: implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016;44(9):23472353. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Smith MR, Coutts AJ, Merlini M, Deprez D, Lenoir M, Marcora SM. Mental fatigue impairs soccer-specific physical and technical performance. Med Sci Sports Exerc. 2016;48(2):267276. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Tassignon B, Verschueren J, Pauw KD, et al. Mental fatigue impairs clinician-friendly balance test performance and brain activity. Transl Sports Med. 2020;3(6):616625. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wilke J, Giesche F, Niederer D, et al. Increased visual distraction can impair landing biomechanics. Biol Sport. 2021;38(1):110127. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Shibata S, Takemura M, Miyakawa S. The influence of differences in neurocognitive function on lower limb kinematics, kinetics, and muscle activity during an unanticipated cutting motion. Phys Ther Res. 2018;21(2):4452. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Shumski EJ, Kasamatsu TM, Wilson KS, Pamukoff DN. Drop landing biomechanics in individuals with and without a concussion history. J Appl Biomech. 2021;37(5):450457. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kenward MG, Roger JH. The use of baseline covariates in crossover studies. Biostatistics. 2010;11(1):117. doi:

  • 33.

    Urban K, Schudlo L, Keightley M, Alain S, Reed N, Chau T. Altered brain activation in youth following concussion: using a dual-task paradigm. Dev Neurorehabil. 2021;24(3):187198. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Sirant LW, Singh J, Martin S, et al. Long-term effects of multiple concussions on prefrontal cortex oxygenation during repeated squat-stands in retired contact sport athletes. Brain Inj. 2022;36(8):931938. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Shortz AE, Pickens A, Zheng Q, Mehta RK. The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women. J Neuroeng Rehabil. 2015;12(1):115. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Walsh V. Is sport the brain’s biggest challenge? Curr Biol. 2014;24(18):R859R860. doi:

  • 37.

    Zghal F, Colson SS, Blain G, Behm DG, Granacher U, Chaouachi A. Combined resistance and plyometric training is more effective than plyometric training alone for improving physical fitness of pubertal soccer players. Front Physiol. 2019;10:1026. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Huang YL, Chang E, Johnson ST, Pollard CD, Hoffman MA, Norcross MF. Explosive quadriceps strength and landing mechanics in females with and without anterior cruciate ligament reconstruction. Int J Environ Res Public Health. 2020;17(20):7431. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Pergher V, Vanbilsen N, Van Hulle M. The effect of mental fatigue and gender on working memory performance during repeated practice by young and older adults. Neural Plast. 2021;2021:6612805. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Coimbra DR, Bevilacqua GG, Pereira FS, Andrade A. Effect of mindfulness training on fatigue and recovery in elite volleyball athletes: a randomized controlled follow-up study. J Sports Sci Med. 2021;20(1):18. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1081 1081 123
Full Text Views 57 57 26
PDF Downloads 66 66 20