The Effectiveness of Neuromobilization in Patients With Cervical Radiculopathy: A Systematic Review With Meta-Analysis

in Journal of Sport Rehabilitation

Click name to view affiliation

Eleftherios ParaskevopoulosLaboratory of Advanced Physiotherapy, Department of Physiotherapy, University of West Attica, Athens, Greece

Search for other papers by Eleftherios Paraskevopoulos in
Current site
Google Scholar
PubMed
Close
*
,
George KoumantakisLaboratory of Advanced Physiotherapy, Department of Physiotherapy, University of West Attica, Athens, Greece

Search for other papers by George Koumantakis in
Current site
Google Scholar
PubMed
Close
, and
Maria PapandreouLaboratory of Advanced Physiotherapy, Department of Physiotherapy, University of West Attica, Athens, Greece

Search for other papers by Maria Papandreou in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Neuromobilization exercises (NE) could be a useful therapeutic tool to induce analgesia and increase function and range of motion (ROM) in patients with musculoskeletal pathologies with neuropathic components; however, the effectiveness of this intervention in patients with cervical radiculopathy (CR) is unknown. Objective: To determine the effectiveness of NE in CR on pain, function, and ROM. Design: Systematic review and meta-analysis. Evidence Acquisition: An electronic search was performed in the MEDLINE, Scopus, PEDro, and EBSCO databases from inception until June 2022. The authors included randomized clinical trials that evaluated the effectiveness of NE against control groups or other interventions that aimed to treat patients with CR. Evidence Synthesis: Seven clinical trials met the eligibility criteria, and for the quantitative synthesis, 5 studies were included. For the studies that compared NE with a control group, the standardized mean difference for pain was −1.33/10 (95% confidence interval [CI], −1.80 to −0.86; P < .01; I 2 = 0%), for function with the Neck Disability Index was −1.21/50 (95% CI, −1.67 to −0.75; P < .01; I 2 = 0%), and for neck flexion and extensions was 0.66 (95% CI, 0.23 to 1.10; P < .01; I 2 = 0%) and 0.47 (95% CI, 0.04 to 0.90; P < .01; I 2 = 0%), respectively, with evidence of clinical effectiveness. These findings were based on moderate-quality evidence according to the Grading of Recommendation, Assessment, Development, and Evaluation rating. In studies that compared NE with other interventions, the meta-analysis failed to demonstrate the statistical or clinical superiority of NE. Conclusions: Moderate quality of evidence suggests that NE may be superior to no treatment for pain, function, and ROM in patients with CR. In contrast, NE are not superior to other interventions in the same outcomes, based on low- to very low-quality evidence. More high-quality research is needed to assess the consistency of these results.

Supplementary Materials

    • Supplementary Table S1 (pdf 253 KB)
    • Supplementary Table S2 (pdf 641 KB)
    • Supplementary Table S3 (pdf 736 KB)
  • Collapse
  • Expand
  • 1.

    Iyer S, Kim HJ. Cervical radiculopathy. Curr Rev Musculoskelet Med. 2016;9(3):272280. PubMed ID: 27250042 doi:

  • 2.

    Savva C, Korakakis V, Efstathiou M, Karagiannis C. Cervical traction combined with neural mobilization for patients with cervical radiculopathy: a randomized controlled trial. J Bodyw Mov Ther. 2021;26:279289. PubMed ID: 33992259 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Efstathiou MA, Stefanakis M, Savva C, Giakas G. Effectiveness of neural mobilization in patients with spinal radiculopathy: a critical review. J Bodyw Mov Ther. 2015;19(2):205212. PubMed ID: 25892373 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Broekema A, Kuijlen J, Lesman-Leegte G, et al. Study protocol for a randomised controlled multicentre study: the Foraminotomy ACDF cost-effectiveness trial (FACET) in patients with cervical radiculopathy. BMJ Open. 2017;7(1):e012829. PubMed ID: 28057652 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Thoomes EJ, Scholten-Peeters GG, de Boer AJ, et al. Lack of uniform diagnostic criteria for cervical radiculopathy in conservative intervention studies: a systematic review. Eur Spine J. 2012;21(8):14591470. PubMed ID: 22531897 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Caridi JM, Pumberger M, Hughes AP. Cervical radiculopathy: a review. HSS J. 2011;7(3):265272. doi:

  • 7.

    Kleinman N, Patel AA, Benson C, Macario A, Kim M, Biondi DM. Economic burden of back and neck pain: effect of a neuropathic component. Popul Health Manag. 2014;17(4):224232. PubMed ID: 24684443 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Eubanks JD. Cervical radiculopathy: nonoperative management of neck pain and radicular symptoms. Am Fam Physician. 2010;81(1):3340. PubMed ID: 20052961

    • Search Google Scholar
    • Export Citation
  • 9.

    Radhakrishnan K, Litchy WJ, O’fallon WM, Kurland LT. Epidemiology of cervical radiculopathy: a population-based study from Rochester, Minnesota, 1976 through 1990. Brain. 1994;117(2):325335. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Mall NA, Buchowski J, Zebala L, Brophy RH, Wright RW, Matava MJ. Spine and axial skeleton injuries in the National Football League. Am J Sports Med. 2012;40(8):17551761. PubMed ID: 22647737 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Monk S, Peters D, Adamson T. Evaluation and management of cervical radiculopathy in athletes. In: Oppenlander ME, ed. Neurosurgical Care of Athletes. Springer; 2022:7789.

    • Search Google Scholar
    • Export Citation
  • 12.

    Thoomes EJ. Effectiveness of manual therapy for cervical radiculopathy, a review. Chiropr Man Therap. 2016;24(1):45. doi:

  • 13.

    Heckmann JG, Lang CJ, Zöbelein I, Laumer R, Druschky A, Neundörfer B. Herniated cervical intervertebral discs with radiculopathy: an outcome study of conservatively or surgically treated patients. J Spinal Disord. 1999;12(5):396401. PubMed ID: 10549703 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Cheng CH, Tsai LC, Chung HC, et al. Exercise training for non-operative and post-operative patient with cervical radiculopathy: a literature review. J Phys Ther Sci. 2015;27(9):30113018. PubMed ID: 26504347 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Radhakrishnan K, Litchy WJ, O’Fallon WM, Kurland LT. Epidemiology of cervical radiculopathy. A population-based study from Rochester, Minnesota, 1976 through 1990. Brain. 1994;117(2):325335. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bryans R, Decina P, Descarreaux M, et al. Evidence-based guidelines for the chiropractic treatment of adults with neck pain. J Manipulative Physiol Ther. 2014;37(1):4263. PubMed ID: 24262386 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kim DG, Chung SH, Jung HB. The effects of neural mobilization on cervical radiculopathy patients’ pain, disability, ROM, and deep flexor endurance. J Back Musculoskelet Rehabil. 2017;30(5):951959. PubMed ID: 28453446 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Cleland JA, Whitman JM, Fritz JM, Palmer JA. Manual physical therapy, cervical traction, and strengthening exercises in patients with cervical radiculopathy: a case series. J Orthop Sports Phys Ther. 2005;35(12):802811. PubMed ID: 16848101 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Nee RJ, Vicenzino B, Jull GA, Cleland JA, Coppieters MW. Neural tissue management provides immediate clinically relevant benefits without harmful effects for patients with nerve-related neck and arm pain: a randomised trial. J Physiother. 2012;58(1):2331. PubMed ID: 22341379 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Rodríguez-Sanz D, Calvo-Lobo C, Unda-Solano F, Sanz-Corbalán I, Romero-Morales C, López-López D. Cervical lateral glide neural mobilization is effective in treating cervicobrachial pain: a randomized waiting list controlled clinical trial. Pain Med. 2017;18(12):24922503. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Ibrahim AO, Fayaz NA, Abdelazeem AH, Hassan KA. The effectiveness of tensioning neural mobilization of brachial plexus in patients with chronic cervical radiculopathy: a randomized clinical trial. Physiother Q. 2021;29(1):1216. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kayiran T, Turhan B. The effectiveness of neural mobilization in addition to conservative physiotherapy on cervical posture, pain and functionality in patients with cervical disc herniation. Adv Rehab. 2021;35(3):816. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Khatwani P, Yadav J, Kalra S. The effect of cervical lateral glide and manual cervical traction combined with neural mobilization on patients with cervical radiculopathy. Indian J Physiother Occup Ther. 2015;9(4):152. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Savva C, Giakas G, Efstathiou M, Karagiannis C, Mamais I. Effectiveness of neural mobilization with intermittent cervical traction in the management of cervical radiculopathy: a randomized controlled trial. Int J Osteopath Med. 2016;21:1928. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Shafique S, Ahmad S, Shakil-Ur-Rehman S. Effect of Mulligan spinal mobilization with arm movement along with neurodynamics and manual traction in cervical radiculopathy patients: a randomized controlled trial. J Pak Med Assoc. 2019;69(11):16011604. PubMed ID: 31740863 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Yadav T, Rayjade A. Short term effectiveness of Maitland mobilization along with neurodynamics versus Maitland mobilization in subjects with cervical spondylosis with radiculopathy—a randomized control trial. Indian J Forensic Med Toxicol. 2020;14(2):9499.

    • Search Google Scholar
    • Export Citation
  • 27.

    Yun Y-H, Lee B-K, Yi J-H, Seo D-K. Effect of nerve mobilization with intermittent cervical segment traction on pain, range of motion, endurance, and disability of cervical radiculopathy. Phys Ther Rehabil Sci. 2020;9(3):149154. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Paraskevopoulos E, Karanasios S, Gioftsos G, Tatsios P, Koumantakis G, Papandreou M. The effectiveness of neuromobilization exercises in carpal tunnel syndrome: systematic review and meta-analysis. Physiother Theory Pract. 2022:140. Ahead of print. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129133. PubMed ID: 19463084 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Beltran-Alacreu H, Jiménez-Sanz L, FernándezCarnero J, La Touche R. Comparison of hypoalgesic effects of neural stretching vs neural gliding: a randomized controlled trial. J Manipulative Physiol Ther. 2015;38(9):644652. PubMed ID: 26481666 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Desjardins-Charbonneau A, Roy JS, Dionne CE, Frémont P, MacDermid JC, Desmeules F. The efficacy of manual therapy for rotator cuff tendinopathy: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2015;45(5):330350. PubMed ID: 25808530 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic Press; 2013.

  • 33.

    Kamonseki DH, Christenson P, Rezvanifar SC, Calixtre LB. Effects of manual therapy on fear avoidance, kinesiophobia and pain catastrophizing in individuals with chronic musculoskeletal pain: systematic review and meta-analysis. Musculoskelet Sci Pract. 2021;51:102311. PubMed ID: 33302214 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383394. PubMed ID: 21195583 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Calvo-Lobo C, Unda-Solano F, López-López D, et al. Is pharmacologic treatment better than neural mobilization for cervicobrachial pain? A randomized clinical trial. Int J Med Sci. 2018;15(5):456465. PubMed ID: 29559834 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Coppieters MW, Stappaerts KH, Wouters LL, Janssens K. The immediate effects of a cervical lateral glide treatment technique in patients with neurogenic cervicobrachial pain. J Orthop Sports Phys Ther. 2003;33(7):369378. PubMed ID: 12918862 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Nar NH. Effect of neural tissue mobilization on pain in cervical radiculopathy patients. Indian J Physiother Occup Therapy. 2014;8(1):144148. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Panjwani KD. To compare the effect of MWM versus MWM along with neural tissue mobilization in case of cervical radiculopathy. Indian J Physiother Occup Therapy. 2016;10(1):4246. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Rajalaxmi V, Lavanya R, Kirupa K, Mary SMD, Yuvarany M. Efficacy of neural mobilization and cervical stabilization cervicobrachial pain: a randomized controlled trial. Medico-Legal Update. 2020;20(4):13981403.

    • Search Google Scholar
    • Export Citation
  • 40.

    Ranganath PU, Dowle P, Chandrasekhar P. Effectiveness of MWM, neurodynamics and conventional therapy versus neurodynamics and conventional therapy in unilateral cervical radiculopathy: a randomized control trial. Indian J Physiother Occup Ther. 2018;12(3):101. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Rodríguez-Sanz D, López-López D, Unda-Solano F, et al. Effects of median nerve neural mobilization in treating cervicobrachial pain: a randomized waiting list-controlled clinical trial. Pain Practice. 2018;18(4):431442. PubMed ID: 28734105 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Anwar S, Malik AN, Amjad I. Effectiveness of neuromobilization in patients with cervical radiculopathy. Rawal Med J. 2015;40(1):3436.

    • Search Google Scholar
    • Export Citation
  • 43.

    Abu Shady NAER, Negm HM, Youssef Zitoun ZM, Abdelhakiem NM. Multimodal intervention of high-intensity laser with neurodynamic mobilization in cervical radiculopathy. Pak J Med Health Sci. 2021;14(4):16791685.

    • Search Google Scholar
    • Export Citation
  • 44.

    Ayub A, Osama M, Ahmad S. Effects of active versus passive upper extremity neural mobilization combined with mechanical traction and joint mobilization in females with cervical radiculopathy: a randomized controlled trial. J Back Musculoskelet Rehabil. 2019;32(5):725730. PubMed ID: 30664500 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Young IA, Cleland JA, Michener LA, Brown C. Reliability, construct validity, and responsiveness of the neck disability index, patient-specific functional scale, and numeric pain rating scale in patients with cervical radiculopathy. Am J Phys Med Rehabil. 2010;89(10):831839. PubMed ID: 20657263 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Pool JJ, Ostelo RW, Hoving JL, Bouter LM, de Vet HC. Minimal clinically important change of the Neck Disability Index and the numerical rating scale for patients with neck pain. Spine. 2007;32(26):30473051. PubMed ID: 18091500 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Audette I, Dumas J-P, Côté JN, De Serres SJ. Validity and between-day reliability of the cervical range of motion (CROM) device. J Orthop Sports Phys Ther. 2010;40(5):18. PubMed ID: 20436238 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Cuenca-Martínez F, La Touche R, Varangot-Reille C, et al. Effects of neural mobilization on pain intensity, disability, and mechanosensitivity: an umbrella review with meta–meta-analysis. Phys Ther. 2022;102(6). doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Basson A, Olivier B, Ellis R, Coppieters M, Stewart A, Mudzi W. The effectiveness of neural mobilization for neuromusculoskeletal conditions: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2017;47(9):593615. PubMed ID: 28704626 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Sitthipornvorakul E, Klinsophon T, Sihawong R, Janwantanakul P. The effects of walking intervention in patients with chronic low back pain: a meta-analysis of randomized controlled trials. Musculoskelet Sci Pract. 2018;34:3846. PubMed ID: 29257996 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Dossing A, Tarp S, Furst DE, et al. Interpreting trial results following use of different intention-to-treat approaches for preventing attrition bias: a meta-epidemiological study protocol. BMJ Open. 2014;4(9):e005297. PubMed ID: 25260368 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Schmid AB, Elliott JM, Strudwick MW, Little M, Coppieters MW. Effect of splinting and exercise on intraneural edema of the median nerve in carpal tunnel syndrome—An MRI study to reveal therapeutic mechanisms. J Orthop Res. 2012;30(8):13431350. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Coppieters MW, Butler DS. Do ‘sliders’ slide and ‘tensioners’ tension? An analysis of neurodynamic techniques and considerations regarding their application. Man Ther. 2008;13(3):213221. PubMed ID: 17398140 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Skyba D, Radhakrishnan R, Rohlwing J, Wright A, Sluka K. Joint manipulation reduces hyperalgesia by activation of monoamine receptors but not opioid or GABA receptors in the spinal cord. Pain. 2003;106(1–2):159168. PubMed ID: 14581123 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Ellis RF, Hing WA. Neural mobilization: a systematic review of randomized controlled trials with an analysis of therapeutic efficacy. J Man Manip Ther. 2008;16(1):822. PubMed ID: 19119380 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Cox T, Sneed T, Hamann H. Neurodynamic mobilization in a collegiate long jumper with exercise-induced lateral leg and ankle pain: a case report. Physiother Theory Pract. 2018;34(3):241249. PubMed ID: 28937849 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Salt E, Wright C, Kelly S, Dean A. A systematic literature review on the effectiveness of non-invasive therapy for cervicobrachial pain. Man Ther. 2011;16(1):5365. PubMed ID: 21075037 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Krämer J. Intervertebral Disk Diseases: Causes, Diagnosis, Treatment, and Prophylaxis. Thieme; 2009.

All Time Past Year Past 30 Days
Abstract Views 2041 2041 318
Full Text Views 48 48 15
PDF Downloads 74 74 20