Measuring and Comparing Physical Education Teachers’ Perceived Attributes of CSPAPs: An Innovation Adoption Perspective

in Journal of Teaching in Physical Education
View More View Less
  • 1 University of South Carolina
  • 2 University of West Georgia
  • 3 Methodist University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $64.00

1 year online subscription

USD  $86.00

Student 2 year online subscription

USD  $122.00

2 year online subscription

USD  $162.00

Purpose: Drawing from the diffusion of innovations theory, this study aimed to develop a survey to measure physical education teachers’ perceived attributes of comprehensive school physical activity programs (CSPAPs) and examine the differences between adopters’ and potential adopters’ perceived attributes. Method: The authors created an electronic survey and e-mailed it to 2,955 physical education teachers identified from a random sample of all public schools in the United States. The participants’ (N = 407) responses were analyzed using the exploratory structural equation modeling framework. Results: The exploratory structural equation modeling yielded five factors: (a) compatibility, (b) relative advantage, (c) observability, (d) simplicity, and (e) trialability (χ2/df = 3.2; root mean square error of approximation = .074; comparative-fit index = .983; Tucker–Lewis index = .971; weighted root mean residual = .668). Compared with potential adopters, teachers who had already adopted a CSPAP perceived CSPAPs as simpler to implement but less trialable. Discussion/Conclusion: This study advances the measurement for CSPAP implementation and offers insight into program attributes that merit a targeted focus in efforts to increase CSPAP adoption.

Webster, Orendorff, and Taunton are with the Department of Physical Education, University of South Carolina, Columbia, SC. Mîndrilă is with the Department of Leadership, Research, and School Improvement, University of West Georgia, Carrollton, GA. Moore is with the Department of Educational Studies, University of South Carolina, Columbia, SC. Stewart is with the Department of Physical Education and Health Education, Methodist University, Fayetteville, NC.

Webster (websterc@mailbox.sc.edu) is the corresponding author.
  • Al-Jabri, I.M., & Sohail, M.S. (2012). Mobile banking adoption: Application of diffusion of Innovation theory. Journal of Electronic Commerce Research, 13, 379391.

    • Search Google Scholar
    • Export Citation
  • Argawal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision Sciences, 28, 557582. doi:10.1111/j.1540-5915.1997.tb01322.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16, 397438. doi:10.1080/10705510903008204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asparouhov, T., Muthén, B., & Morin, A.J. (2015). Bayesian structural equation modeling with cross-loadings and residual covariances: Comments on Stromeyer et al. Journal of Management, 41, 15611577. doi:10.1177/0149206315591075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, N.L. (2007). Developing a questionnaire to measure perceived attributes of ehealth innovations. American Journal of Health Behavior, 31, 612621. PubMed ID: 17691874 doi:10.5993/AJHB.31.6.6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, P. (2007). Structural equation modeling: Adjudging model fit. Personality and Individual Differences, 42, 815824. doi:10.1016/j.paid.2006.09.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beighle, A., Erwin, H., Castelli, D., & Ernst, M. (2009). Preparing physical educators for the role of physical activity director. Journal of Physical Education, Recreation & Dance, 80(4), 2429. doi:10.1080/07303084.2009.10598307

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bialosiewicz, S., Murphy, K., & Berry, T. (2013). An introduction to measurement invariance testing: Resource packet for participants (pp. 137). American Evaluation Association. Retrieved from http://comm.eval.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=63758fed-a490-43f2-8862-2de0217a08b8

    • Search Google Scholar
    • Export Citation
  • Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111150. doi:10.1207/S15327906MBR3601_05

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, B. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Erlbaum.

    • Search Google Scholar
    • Export Citation
  • Carson, R.L. (2012). Certification and duties of a director of physical activity. Journal of Physical Education, Recreation & Dance, 83(6), 1629. doi:10.1080/07303084.2012.10598790

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, R.L., Castelli, D.M., Beighle, A., & Erwin, H. (2014). School-based physical activity promotion: A conceptual framework for research and practice. Childhood Obesity, 10(2), 100106. doi:10.1089/chi.2013.0134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, R.L., Castelli, D.M., Pulling Kuhn, A.C., Moore, J.B., Beets, M.W., Beighle, A., … Glowacki, E.M. (2014). Impact of trained champions of comprehensive school physical activity programs on school physical activity offerings, youth physical activity and sedentary behaviors. Preventive Medicine, 69, S12S19. PubMed ID: 25158209 doi:10.1016/j.ypmed.2014.08.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, R.L., & Webster, C.A. (in press). Comprehensive school physical activity programs: Putting research into evidence-based practice. Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention. (2013). Comprehensive school physical activity programs: A guide for schools. Atlanta, GA: U.S. Department of Health and Human Services.

    • Search Google Scholar
    • Export Citation
  • Chen, S., & Gu, X. (2017). Toward active living: Comprehensive school physical activity program research and implications. Quest, 70, 191212. doi:10.1080/00336297.2017.1365002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, G.W., & Rensvold, R.B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233255. doi:10.1207/S15328007SEM0902_5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costello, A.B., & Osborne, J.W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 19.

    • Search Google Scholar
    • Export Citation
  • de Winter, J.D., Dodou, D., & Wieringa, P.A. (2009). Exploratory factor analysis with small sample sizes. Multivariate Behavioral Research, 44, 147181. PubMed ID: 26754265 doi:10.1080/00273170902794206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiStefano, C., Liu, J., Jiang, N., & Shi, D. (2018). Examination of the weighted root mean square residual: Evidence for trustworthiness? Structural Equation Modeling: A Multidisciplinary Journal, 25, 453466. doi:10.1080/10705511.2017.1390394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiStefano, C., Mîndrilă, D., & Monrad, D. (2013). Investigating factorial invariance of teacher climate factors across school organizational levels. In M.S. Khine (Ed.), Application of structural equation modeling in educational research and practice (pp. 257275). Rotterdam, The Netherlands: Sense Publishers.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erwin, H., Beighle, A., Carson, R.L., & Castelli, D.M. (2013). Comprehensive school-based physical activity promotion: A review. Quest, 65, 412428. doi:10.1080/00336297.2013.791872

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabrigar, L.R., Wegener, D.T., MacCallum, R.C., & Strahan, E.J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272299. doi:10.1037/1082-989X.4.3.272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. (2003). The survey handbook (Vol. 1). Thousand Oaks, CA: Sage.

  • Finney, S.J., & Davis, S.L. (2003, April). Examining the invariance of the achievement goal questionnaire across gender. Paper presented at the meeting of the American Educational Research Association, Chicago, IL.

    • Export Citation
  • Finney, S.J., & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. Structural Equation Modeling: A Second Course, 10, 269314.

    • Search Google Scholar
    • Export Citation
  • Heerwegh, D. (2014). Small sample Bayesian factor analysis. PhUSE. Retrieved from http://www.lexjansen.com/phuse/2014/sp/SP03.pdf

  • Heidorn, B., & Centeio, E. (2012). The director of physical activity and staff involvement. Journal of Physical Education, Recreation & Dance, 83(7), 1326. doi:10.1080/07303084.2012.10598806

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helitzer, D., Heath, D., Maltrud, K., Sullivan, E., & Alverson, D. (2003). Assessing or predicting adoption of telehealth using the diffusion of innovations theory: A practical example from a rural program in New Mexico. Telemedicine Journal and e-Health, 9, 179187. PubMed ID: 12855040 doi:10.1089/153056203766437516

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, L.T., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 155. doi:10.1080/10705519909540118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. (2017). A descriptive study of the factors influencing adoption of the comprehensive school physical activity program in P-12 schools (Unpublished doctoral dissertation). Georgia State University, Atlanta, GA.

    • Search Google Scholar
    • Export Citation
  • Johnson, R.L., & Morgan, G.B. (2016). Survey scales: A guide to development, analysis, and reporting. New York, NY: The Guilford Press.

  • Kelder, S.H., Goc Karp, G., Scruggs, P.W., & Brown, H. (2014). Chapter 1: Setting the stage: Coordinated approaches to school health and physical education. Journal of Teaching in Physical Education, 33, 440448. doi:10.1123/jtpe.2014-0087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krosnick, J.A., & Fabrigar, L.R. (1997). Designing rating scales for effective measurement in surveys. In L. Lyberg, P. Biemer, M. Collins, E. de Leeuw, C. Dippo, N. Schwarz, & D. Trewin (Eds.), Survey measurement and process quality (pp. 141164). New York, NY: John Wiley.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lounsbery, M., McKenzie, T., Morrow, J., & Holt, K. (2011). School Physical Activity Policy Assessment (S-PAPA). Retrieved from https://activelivingresearch.org/sites/default/files/S-PAPA_Instrument_1.pdf

    • Export Citation
  • Makse, T., & Volden, C. (2011). The role of policy attributes in the diffusion of innovations. The Journal of Politics, 73(1), 108124. doi:10.1017/S0022381610000903

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manfreda, K.L., Bosnjak, M., Berzelak, J., Haas, I., Vehovar, V., & Berzelak, N. (2008). Web surveys versus other survey modes: A meta-analysis comparing response rates. Journal of the Market Research Society, 50(1), 79104.

    • Search Google Scholar
    • Export Citation
  • Marsh, H.W., Morin, A.J., Parker, P.D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10, 85110. PubMed ID: 24313568 doi:10.1146/annurev-clinpsy-032813-153700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G.C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2, 192222. doi:10.1287/isre.2.3.192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, A.J.S., & Maiano, C. (2011). Cross-validation of the short form of the physical self-inventory (PSI-S) using exploratory structural equation modeling (ESEM). Psychology of Sport and Exercise, 12, 540554. doi:10.1016/j.psychsport.2011.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, A.J.S., Marsh, H.W., & Nagengast, B. (2013). Chapter 10.Exploratory structural equation modeling. In G.R. Hancock & R.O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed.). Charlotte, NC: Information Age Publishing, Inc.

    • Search Google Scholar
    • Export Citation
  • Muthén, B., & Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Mplus Web Notes, 4(5), 122.

    • Search Google Scholar
    • Export Citation
  • Muthén, B., & Asparouhov, T. (2012). Bayesian SEM: A more flexible representation of substantive theory. Psychological Methods, 17, 313335. doi:10.1037/a0026802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Association for Sport and Physical Education. (2008). Comprehensive school physical activity programs [Position statement]. Reston, VA: Author.

    • Search Google Scholar
    • Export Citation
  • Pankratz, M., Hallfors, D., & Cho, H. (2002). Measuring perceptions of innovation adoption: The diffusion of a federal drug prevention policy. Health Education Research, 17, 315326. PubMed ID: 12120847 doi:10.1093/her/17.3.315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preacher, K.J., & MacCallum, R.C. (2002). Exploratory factor analysis in behavior genetics research: Factor recovery with small sample sizes. Behavior Genetics, 32, 153161. PubMed ID: 12036113 doi:10.1023/A:1015210025234

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E.M. (1995). Diffusion of innovations (4th ed.). New York, NY: The Free Press.

  • Rogers, E.M. (2002). Diffusion of innovations (5th ed.). New York, NY: The Free Press.

  • Russ, L.B., Webster, C.A., Beets, M.W., & Phillips, D.S. (2015). Systematic review and meta-analysis of multicomponent interventions through schools to increase physical activity. Journal of Physical Activity & Health, 12, 14361446. PubMed ID: 25599111 doi:10.1123/jpah.2014-0244

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Society of Health and Physical Educators America. (2015). Comprehensive school physical activity programs: Helping all students log 60 minutes of physical activity each day [Position statement]. Retrieved from https://www.shapeamerica.org/advocacy/positionstatements/pa/upload/Comprehensive-School-Physical-Activity-Programs-Helping-All-Students-Log-60-Minutes-of-Physical-Activity-Eeach-Day.pdf

    • Export Citation
  • Trippi, R.R., & Settle, R.B. (1976). A nonparametric coefficient of internal consistency. Multivariate Behavioral Research, 11, 419424. PubMed ID: 26804113 doi:10.1207/s15327906mbr1104_3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vandenberg, R.J., & Lance, C.E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 470. doi:10.1177/109442810031002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, C.A., Beets, M.W., Weaver, R.G., Vazou, S., & Russ, L. (2015). Rethinking recommendations for implementing comprehensive school physical activity programs: A partnership model. Quest, 67, 185202. doi:10.1080/00336297.2015.1017588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, C.A., Caputi, P., Perreault, M., Doan, R., Doutis, P. & Weaver, R.G. (2013). Elementary classroom teachers’ adoption of physical activity promotion in the context of a statewide policy: An innovation diffusion and socio-ecologic perspective. Journal of Teaching in Physical Education, 32, 419440. doi:10.1123/jtpe.32.4.419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, C.A., Russ, L., Webster, L., Molina, S., Lee, H., & Cribbs, J. (2016). PETE faculty beliefs concerning the preparation of preservice teachers for CSPAP roles: An exploratory study. Physical Educator, 73, 315339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C., & Muthén, B. (2002, April). Evaluation of model fit indices for latent variable models with categorical and continuous outcomes. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 256 256 45
Full Text Views 41 41 2
PDF Downloads 26 26 0