Exercise Physiology From 1980 to 2020: Application of the Natural Sciences

Click name to view affiliation

Jane A. Kent
Search for other papers by Jane A. Kent in
Current site
Google Scholar
PubMed
Close
and
Kate L. Hayes
Search for other papers by Kate L. Hayes in
Current site
Google Scholar
PubMed
Close
Restricted access

The field of exercise physiology has enjoyed tremendous growth in the past 40 years. With its foundations in the natural sciences, it is an interdisciplinary field that is highly relevant to human performance and health. The focus of this review is on highlighting new approaches, knowledge, and opportunities that have emerged in exercise physiology over the last four decades. Key among these is the adoption of advanced technologies by exercise physiologists to address fundamental research questions, and the expansion of research topics to range from molecular to organismal, and population scales in order to clarify the underlying mechanisms and impact of physiological responses to exercise in health and disease. Collectively, these advances have ensured the position of the field as a partner in generating new knowledge across many scientific and health disciplines.

The authors are with the Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.

Kent (jkent@kin.umass.edu) is corresponding author.
  • Collapse
  • Expand
  • Aasdahl, L., Nilsen, T.I.L., Meisingset, I., Nordstoga, A.L., Evensen, K.A.I., Paulsen, J., . . . Skarpsno, E.S. (2021). Genetic variants related to physical activity or sedentary behaviour: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 18(1). https://doi.org/10.1186/s12966-020-01077-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, D.L., Matthews, P.M., & Radda, G.K. (1984). Metabolic recovery after exercise and the assessment of mitochondrial function in Vivo in human skeletal muscle by means of 31P NMR. Magnetic Resonance in Medicine, 1(3), 307–315. https://doi.org/10.1002/mrm.1910010303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, D.W., & Kohrt, W.M. (2007). BMD decreases over the course of a year in competitive male cyclists. Journal of Bone and Mineral Research, 23(4), 484–491. https://doi.org/10.1359/jbmr.071203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, L.M., & Gadlin, H. (2012). Collaboration and team science. Journal of Investigative Medicine, 60(5), 768–775. https://doi.org/10.2310/jim.0b013e318250871d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigland-Ritchie, B. (1981). EMG/force relations and fatigue of human voluntary contractions. Exercise and Sport Sciences Reviews, 9(1), 75117. PubMed ID: 6749525 https://doi.org/10.1249/00003677-198101000-00002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S.N., Hohl, H.W.I., Paffenbarger, R.S. Jr., Clark, D.G., Cooper, K.H., & Gibbons, L.W. (1989). Physical fitness and all-cause mortality. A prospective study of healthy men and women. The Journal of the American Medical Association, 262(17), 2395–2401. https://doi.org/10.1001/jama.1989.03430170057028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, F.W. (1988). Perspectives on molecular and cellular exercise physiology. Journal of Applied Physiology, 65(4), 1461–1471. https://doi.org/10.1152/jappl.1988.65.4.1461

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, F.W., Gordon, S.E., Carlson, C.J., & Hamilton, M.T. (2000). Waging war on modern chronic diseases: primary prevention through exercise biology. Journal of Applied Physiology, 88(2), 774–787. https://doi.org/10.1152/jappl.2000.88.2.774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boska, M. (1991). Estimating the ATP cost of force production in the human gastrocnemius/soleus muscle group using 31P MRS and 1H MRI. NMR in Biomedicine, 4(4), 173–181. https://doi.org/10.1002/nbm.1940040404

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brillault-Salvat, C., Giacomini, E., Jouvensal, L., Bloch, C., Wary, G., & Carlier, P.G. (1997). Simultaneous determination of muscle perfusion and oxygenation by interleaved NMR plethysmography and deoxymyoglobin spectroscopy. NMR in Biomedicine, 10(7), 315–323. https://doi.org/10.1002/(SICI)1099-1492(199710)10:7<315::AID-NBM489>3.0.CO;2-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, G.A. (1991). Current concepts in lactate exchange. Medicine & Science in Sports & Exercise, 23(8), 895906. PubMed ID: 1956262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunt, V.E., Gioscia‐Ryan, R.A., Richey, J.J., Zigler, M.C., Cuevas, L.M., Gonzalez, A., . . . Seals, D.R. (2019). Suppression of the gut microbiome ameliorates age‐related arterial dysfunction and oxidative stress in mice. The Journal of Physiology, 597(9), 2361–2378. https://doi.org/10.1113/JP277336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnley, M., & Jones, A.M. (2018). Power–duration relationship: Physiology, fatigue, and the limits of human performance. European Journal of Sport Science, 18(1), 1–12. https://doi.org/10.1080/17461391.2016.1249524

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callahan, D.M., Umberger, B.R., & Kent, J.A. (2016). Mechanisms of in vivo muscle fatigue in humans: investigating age-related fatigue resistance with a computational model. The Journal of Physiology, 594(12), 3407–3421. https://doi.org/10.1113/JP271400

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chance, B., Eleff, S., & Leigh, J.S. (1980). Noninvasive, nondestructive approaches to cell bioenergetics. Proceedings of the National Academy of Sciences, 77(12), 7430–7434. https://doi.org/10.1073/pnas.77.12.7430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chance, B., Eleff, S., Leigh, J.S., Sokolow, D., & Sapega, A. (1981). Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: A gated 31P NMR study. Proceedings of the National Academy of Sciences, 78(11), 6714–6718. https://doi.org/10.1073/pnas.78.11.6714

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chance, B., Nioka, S., Kent, J., McCully, K., Fountain, M., Greenfeld, R., & Holtom, G. (1988). Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Analytical Biochemistry, 174(2), 698–707. https://doi.org/10.1016/0003-2697(88)90076-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chien, S., & Gargus, J.J. (1987). Molecular biology in physiology. The FASEB Journal, 1(2), 97-102. https://doi.org/10.1096/fasebj.1.2.2886391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, D.S., & Doles, J.D. (2017). Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity. Gene, 636, 54–63. https://doi.org/10.1016/j.gene.2017.09.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Allen, J.M., Pence, B.D., Wallig, M.A., Gaskins, H.R., White, B.A., & Woods, J.A. (2016). Exercise and gut immune function: Evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunology & Cell Biology, 94(2), 158–163. https://doi.org/10.1038/icb.2015.108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooke, N.J., & Hilton, M.L. (Eds.). (2015). Enhancing the effectiveness of team science. National Academies Press. https://doi.org/10.17226/19007

    • Search Google Scholar
    • Export Citation
  • Cooke, R., & Pate, E. (1985). The effects of ADP and phosphate on the contraction of muscle fibers. Biophysical Journal, 48(5), 789–798. https://doi.org/10.1016/S0006-3495(85)83837-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, M.J., Gadian, D.G., & Wilkie, D.R. (1977). Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance. The Journal of Physiology, 267(3), 703–735. https://doi.org/10.1113/jphysiol.1977.sp011835

    • Search Google Scholar
    • Export Citation
  • Debold, E.P., Beck, S.E., & Warshaw, D.M. (2008). Effect of low pH on single skeletal muscle myosin mechanics and kinetics. American Journal of Physiology-Cell Physiology, 295(1), C173–C179. https://doi.org/10.1152/ajpcell.00172.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donovan, C.M., & Brooks, G.A. (1983). Endurance training affects lactate clearance, not lactate production. American Journal of Physiology-Endocrinology and Metabolism, 244(1), E83–E92. https://doi.org/10.1152/ajpendo.1983.244.1.E83

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubé, J.J., Coen, P.M., DiStefano, G., Chacon, A.C., Helbling, N.L., Desimone, M.E., Stafanovic-Racic, M., . . . Goodpaster, B.H. (2014). Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance. American Journal of Physiology-Endocrinology and Metabolism, 307(12), E1117–E1124. https://doi.org/10.1152/ajpendo.00257.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edgerton, V.R., & Roy, R.R. (1994). Neuromuscular adaptation to actual and simulated weightlessnessAdvances in Space Biology and Medicine, 4, 33–67 https://doi.org/10.1016/s1569-2574(08)60134-3

    • Search Google Scholar
    • Export Citation
  • Edwards, R.H., Hill, D.K., Jones, D.A., & Merton, P.A. (1977). Fatigue of long duration in human skeletal muscle after exercise. The Journal of Physiology, 272(3), 769–778. https://doi.org/10.1113/jphysiol.1977.sp012072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enoka, R.M., & Stuart, D.G. (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology, 72(5), 1631–1648. https://doi.org/10.1152/jappl.1992.72.5.1631

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faulkner, J.A., & White, T.P. (1981). Current and future topics in exercise physiology. In G.A. Brooks (Ed.), Perspectives on the academic discipline of physical education: A tribute to G. Lawrence Rarick (pp. 7496). Human Kinetics Publishers.

    • Search Google Scholar
    • Export Citation
  • Ferrucci, L. (2008). The Baltimore Longitudinal Study of Aging (BLSA): A 50-year-long journey and plans for the future. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(12), 1416–1419. https://doi.org/10.1093/gerona/63.12.1416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, R.H. (2008). The cross-bridge cycle and skeletal muscle fatigue. Journal of Applied Physiology, 104(2), 551–558. https://doi.org/10.1152/japplphysiol.01200.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgerald, L.F., Christie, A.D., & Kent, J.A. (2016). Heterogeneous effects of old age on human muscle oxidative capacity in vivo: a systematic review and meta-analysis. Applied Physiology, Nutrition, and Metabolism, 41(11), 1137–1145. https://doi.org/10.1139/apnm-2016-0195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, W., Brooks, G.A., & Klonoff, D.C. (2018). Wearable physiological systems and technologies for metabolic monitoring. Journal of Applied Physiology, 124(3), 548–556. https://doi.org/10.1152/japplphysiol.00407.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geeves, M.A., Fedorov, R., & Manstein, D.J. (2005). Molecular mechanism of actomyosin-based motility. Cellular and Molecular Life Sciences, 62(13), 1462–1477. https://doi.org/10.1007/s00018-005-5015-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glancy, B., Hartnell, L.M., Malide, D., Yu, Z.-X., Combs, C.A., Connelly, P.S., Subramaniam, S., & Balaban, R.S. (2015). Mitochondrial reticulum for cellular energy distribution in muscle. Nature, 523(7562), 617–620. https://doi.org/10.1038/nature14614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomes, C., Almeida, J.A., Franco, O.L., & Petriz, B. (2020). Omics and the molecular exercise physiology. Advanced Clinical Chemistry, 96, 5584. https://doi.org/10.1016/bs.acc.2019.11.003

    • Search Google Scholar
    • Export Citation
  • Goodpaster, B.H., & Kelley, D.E. (2002). Skeletal muscle triglyceride: Marker or mediator of obesity-induced insulin resistance in type 2 diabetes mellitus? Current Diabetes Reports, 2(3), 216–222. https://doi.org/10.1007/s11892-002-0086-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gozansky, W.S., van Pelt, R.E., Jankowski, C.M., Schwartz, R.S., & Kohrt, W.M. (2005). Protection of bone mass by estrogens and raloxifene during exercise-induced weight loss. The Journal of Clinical Endocrinology & Metabolism, 90(1), 52–59. https://doi.org/10.1210/jc.2004-0275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenleaf, J.E. (1989). Energy and thermal regulation during bed rest and spaceflight. Journal of Applied Physiology, 67(2), 507–516. https://doi.org/10.1152/jappl.1989.67.2.507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grigoriev, A.I. (1983). Correction of changes in fluid-electrolyte metabolism in manned space flights. Aviation, Space, and Environmental Medicine, 54(4), 318323. PubMed ID: 6847568

    • Search Google Scholar
    • Export Citation
  • Grimmer, M., Riener, R., Walsh, C.J., & Seyfarth, A. (2019). Mobility related physical and functional losses due to aging and disease—A motivation for lower limb exoskeletons. Journal of NeuroEngineering and Rehabilitation, 16(1), Article 2. https://doi.org/10.1186/s12984-018-0458-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadid, A., Epstein, Y., Shabshin, N., & Gefen, A. (2018). Biomechanical model for stress fracture–related factors in athletes and soldiers. Medicine & Science in Sports & Exercise, 50(9), 1827–1836. https://doi.org/10.1249/MSS.0000000000001628

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamaoka, T., McCully, K.K., Niwayama, M., & Chance, B. (2011). The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1955), 4591–4604. https://doi.org/10.1098/rsta.2011.0298

    • Search Google Scholar
    • Export Citation
  • Hepple, R.T., & Rice, C.L. (2016). Innervation and neuromuscular control in ageing skeletal muscle. The Journal of Physiology, 594(8), 1965–1978. https://doi.org/10.1113/JP270561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, D.F. (1993). Arthritis and exercise. Primary Care, 20(4), 895910. PubMed ID: 8310087

  • Hood, D.A., Irrcher, I., Ljubicic, V., & Joseph, A.-M. (2006). Coordination of metabolic plasticity in skeletal muscle. Journal of Experimental Biology, 209(12), 2265–2275. https://doi.org/10.1242/jeb.02182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huxley, H.E. (1969). The mechanism of muscular contraction. Science, 164(3886), 1356–1366. https://doi.org/10.1126/science.164.3886.1356

  • Hyldahl, R.D., Schwartz, L.M., & Clarkson, P.M. (2013). NF-KB activity functions in primary pericytes in a cell- and non-cell-autonomous manner to affect myotube formation. Muscle & Nerve, 47(4), 522–531. https://doi.org/10.1002/mus.23640

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishihara, K., Uchiyama, N., Kizaki, S., Mori, E., Nonaka, T., & Oneda, H. (2020). Application of continuous glucose monitoring for assessment of individual carbohydrate requirement during ultramarathon race. Nutrients, 12(4), 1121. https://doi.org/10.3390/nu12041121

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques, M., Hiam, D., Craig, J., Barrès, R., Eynon, N., & Voisin, S. (2019). Epigenetic changes in healthy human skeletal muscle following exercise—A systematic review. Epigenetics, 14(7), 633–648. https://doi.org/10.1080/15592294.2019.1614416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansen, M.Y., MacDonald, C.S., Hansen, K.B., Karstoft, K., Christensen, R., Pedersen, M., . . . Ried-Larsen, M. (2017). Effect of an intensive lifestyle intervention on glycemic control in patients with type 2 diabetes. JAMA, 318(7), 637–646. https://doi.org/10.1001/jama.2017.10169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juvet, L.K., Thune, I., Elvsaas, I.K.Ø., Fors, E.A., Lundgren, S., Bertheussen, G., . . . Oldervoll, L.M. (2017). The effect of exercise on fatigue and physical functioning in breast cancer patients during and after treatment and at 6 months follow-up: A meta-analysis. The Breast, 33, 166–177. https://doi.org/10.1016/j.breast.2017.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katkovsky, B.S., & Pomyotov, Y.D. (1976). Cardiac output during physical exercises following real and simulated space flight. Life Science and Space Research, 14, 301305.

    • Search Google Scholar
    • Export Citation
  • Kelly, R.S., Kelly, M.P., & Kelly, P. (2020). Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866(12), Article 165936. https://doi.org/10.1016/j.bbadis.2020.165936

    • Search Google Scholar
    • Export Citation
  • Kemp, G.J., Taylor, D.J., Styles, P., & Radda, G.K. (1993). The production, buffering and efflux of protons in human skeletal muscle during exercise and recovery. NMR in Biomedicine, 6(1), 73–83. https://doi.org/10.1002/nbm.1940060112

    • Search Google Scholar
    • Export Citation
  • Klein, K.E., Wegmann, H.M., Collier, S.R., & Kuklinksi, P. (1977). Athletic endurance training—advantage for space flight? The significance of physical fitness for selection and training of Spacelab crews. Aviation, Space, and Environmental Medicine, 48(3), 215–222.

    • Search Google Scholar
    • Export Citation
  • Knuth, S.T., Dave, H., Peters, J.R., & Fitts, R.H. (2006). Low cell pH depresses peak power in rat skeletal muscle fibres at both 30°C and 15°C: Implications for muscle fatigue. The Journal of Physiology, 575(3), 887–899. https://doi.org/10.1113/jphysiol.2006.106732

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, W.E., Powell, K.E., Haskell, W.L., Janz, K.F., Campbell, W.W., Jakicic, J.M., . . . Piercy, K.L. (2019). Physical activity, all-cause and cardiovascular mortality, and cardiovascular disease. Medicine & Science in Sports & Exercise, 51(6), 1270–1281. https://doi.org/10.1249/mss.0000000000001939

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krumpolec, P., Klepochová, R., Just, I., Tušek Jelenc, M., Frollo, I., Ukropec, J., . . . Valkovič, L. (2020). Multinuclear MRS at 7T uncovers exercise driven differences in skeletal muscle energy metabolism between young and seniors. Frontiers in Physiology, 11, Article 644. https://doi.org/10.3389/fphys.2020.00644

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushmerick, M.J. (1986). Spectroscopic applications of magnetic resonance to biomedical problems. Cardiovascular and Interventional Radiology, 8(5–6), 382–389. https://doi.org/10.1007/bf02552375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lännergren, J., & Westerblad, H. (1991). Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle. The Journal of Physiology, 434(1), 307–322. https://doi.org/10.1113/jphysiol.1991.sp018471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanza, I.R., Wigmore, D.M., Befroy, D.E., & Kent-Braun, J.A. (2006). In vivo ATP production during free-flow and ischaemic muscle contractions in humans. The Journal of Physiology, 577(1), 353–367. https://doi.org/10.1113/jphysiol.2006.114249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, R.G., Maynard, L., & Kent, J.A. (2014). High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans. Acta Physiologica, 211(1), 147–160. https://doi.org/10.1111/apha.12275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lokey, E.A., Tran, Z.V., Wells, C.L., Myers, B.C., & Tran, A.C. (1991). Effects of physical exercise on pregnancy outcomes: A meta-analytic review. Medicine & Science in Sports & Exercise, 23(11), 1234–1239. https://doi.org/10.1249/00005768-199111000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., & Freedson, P.S. (1995). Field trial of a three-dimensional activity monitor: comparison with self report. Medicine & Science in Sports & Exercise, 27(7), 1071–1078. https://doi.org/10.1249/00005768-199507000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, S.L., & Hargreaves, M. (2019). Epigenetics and Exercise. Trends in Endocrinology & Metabolism, 30(9), 636–645. https://doi.org/10.1016/j.tem.2019.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meex, R.C.R., Schrauwen-Hinderling, V.B., Moonen-Kornips, E., Schaart, G., Mensink, M., Phielix, E., . . . Hesselink, M.K.C. (2010). Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes, 59(3), 572–579. https://doi.org/10.2337/db09-1322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melanson, E.L., Freedson, P.S., & Blair, S. (1996). Physical activity assessment: A review of methods. Critical Reviews in Food Science and Nutrition, 36(5), 385–396. https://doi.org/10.1080/10408399609527732

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, R.A. (1988). A linear model of muscle respiration explains monoexponential phosphocreatine changes. American Journal of Physiology-Cell Physiology, 254(4), C548–C553. https://doi.org/10.1152/ajpcell.1988.254.4.C548

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyerspeer, M., Boesch, C., Cameron, D., Dezortová, M., Forbes, S. C., Heerschap, A., . . . Willis, D. (2021). 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR in Biomedicine, 34(5), Article 4246. https://doi.org/10.1002/nbm.4246

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R.G., Giannini, D., Milner-Brown, H.S., Layzer, R.B., Koretsky, A.P., Hooper, D., & Weiner, M.W. (1987). Effects of fatiguing exercise on high-energy phosphates, force, and EMG: Evidence for three phases of recovery. Muscle & Nerve, 10(9), 810–821. https://doi.org/10.1002/mus.880100906

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, W.-K., Ding, W., Zhang, C.J.P., Zhong, L., Long, Y., Li, Z., . . . Wang, Z. (2018). The effect of exercise during pregnancy on gestational diabetes mellitus in normal-weight women: a systematic review and meta-analysis. BMC Pregnancy and Childbirth, 18(1), Article 440. https://doi.org/10.1186/s12884-018-2068-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mondon, C.E., Dolkas, C.B., & Reaven, G.M. (1983). Effect of confinement in small space flight size cages on insulin sensitivity of exercise-trained rats. Aviation, Space, and Environmental Medicine, 54(10), 919922. PubMed ID: 6651715

    • Search Google Scholar
    • Export Citation
  • National Institutes of Health. (2020 ). Molecular transducers of physical activity in humans.https://commonfund.nih.gov/moleculartransducers

  • Neufer, P.D., Bamman, M.M., Muoio, D.M., Bouchard, C., Cooper, D.M., Goodpaster, B. H., . . . Laughlin, M.R. (2015). Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metabolism, 22(1), 4–11. https://doi.org/10.1016/j.cmet.2015.05.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolucci, A., Balducci, S., Cardelli, P., Zanuso, S., & Pugliese, G. (2011). Improvement of quality of life with supervised exercise training in subjects with type 2 diabetes mellitus. JAMA Internal Medicine, 171(21), 1951–1953. https://doi.org/10.1001/archinternmed.2011.561

    • Search Google Scholar
    • Export Citation
  • Ortega, J.F., Morales-Palomo, F., Ramirez-Jimenez, M., Moreno-Cabañas, A., & Mora-Rodríguez, R. (2020). Exercise improves metformin 72-h glucose control by reducing the frequency of hyperglycemic peaks. Acta Diabetologica, 57(6), 715–723. https://doi.org/10.1007/s00592-020-01488-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, O., Cronin, O., Clarke, S.F., Murphy, E.F., Molloy, M. G., Shanahan, F., & Cotter, P.D. (2015). Exercise and the microbiota. Gut Microbes, 6(2), 131–136. https://doi.org/10.1080/19490976.2015.1011875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahor, M., Guralnik, J.M., Ambrosius, W.T., Blair, S., Bonds, D.E., Church, T.S., . . . Williamson, J.D. (2014). Effect of structured physical activity on prevention of major mobility disability in older adults. JAMA, 311(23), 2387–2396. https://doi.org/10.1001/jama.2014.5616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, C.G.R., Heigenhauser, G.J.F., Bonen, A., & Spriet, L.L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 33(6), 1112–1123. https://doi.org/10.1139/h08-097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poole, D.C., Rossiter, H.B., Brooks, G.A., & Gladden, L.B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599(3), 737–767. https://doi.org/10.1113/jp279963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porter, K.R., & Palade, G.E. (1957). Studies on the endoplasmic reticulum. The Journal of Biophysical and Biochemical Cytology, 3(2), 269–300. https://doi.org/10.1083/jcb.3.2.269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudroff, T., Kindred, J.H., & Kalliokoski, K.K. (2015). [18F]-FDG positron emission tomography—An established clinical tool opening a new window into exercise physiology. Journal of Applied Physiology, 118(10), 11811190. https://doi.org/10.1152/japplphysiol.01070.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, T.E., Brizendine, J.T., & McCully, K.K. (2013). A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy. Journal of Applied Physiology, 114(2), 230237. PubMed ID: 23154991 https://doi.org/10.1152/japplphysiol.01043.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, J.A., Nogiec, C. D., Lindholm, M. E., Adkins, J. N., Amar, D., Dasari, S., . . . Rivas, M. A. (2020). Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the dynamic responses to exercise. Cell, 181(7), 1464-1474. https://doi.org/10.1016/j.cell.2020.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarzynski, M.A., Loos, R.J.F., Lucia, A., Perusse, L., Roth, S.M., Wolfarth, B., . . . Bouchard, C. (2016). Advances in exercise, fitness, and performance genomics in 2015. Medicine & Science in Sports & Exercise, 48(10), 1906–1916. https://doi.org/10.1249/mss.0000000000000982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherrington, C., Fairhall, N.J., Wallbank, G.K., Tiedemann, A., Michaleff, Z.A., Howard, K., . . . Lamb, S.E. (2019). Exercise for preventing falls in older people living in the community. Cochrane Database of Systematic Reviews. 1, CD012424. https://doi.org/10.1002/14651858.cd012424.pub2

    • Search Google Scholar
    • Export Citation
  • Shiga, T., Tanabe, K., Nakase, Y., Shida, T., & Chance, B. (1995). Development of a portable tissue oximeter using near infra-red spectroscopy. Medical & Biological Engineering & Computing, 33(4), 622–626. https://doi.org/10.1007/bf02522525

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperlich, B., Zinner, C., Heilemann, I., Kjendlie, P.-L., Holmberg, H.-C., & Mester, J. (2010). High-intensity interval training improves VO2peak, maximal lactate accumulation, time trial and competition performance in 9–11-year-old swimmers. European Journal of Applied Physiology, 110(5), 1029–1036. https://doi.org/10.1007/s00421-010-1586-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spudich, J.A. (2001). The myosin swinging cross-bridge model. Nature Reviews Molecular Cell Biology, 2(5), 387–392. https://doi.org/10.1038/35073086

  • Stanley, W.C., Wisneski, J.A., Gertz, E.W., Neese, R.A., & Brooks, G.A. (1988). Glucose and lactate interrelations during moderate-intensity exercise in humans. Metabolism, 37(9), 850–858. https://doi.org/10.1016/0026-0495(88)90119-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanton, R., & Reaburn, P. (2014). Exercise and the treatment of depression: A review of the exercise program variables. Journal of Science and Medicine in Sport, 17(2), 177–182. https://doi.org/10.1016/j.jsams.2013.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, E.J., & Hawley, J.A. (2014). Mitochondrial function in metabolic health: A genetic and environmental tug of war. Biochimica et Biophysica Acta (BBA)—General Subjects, 1840(4), 1285–1294. https://doi.org/10.1016/j.bbagen.2013.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan-Kwantes, W., Haman, F., Kingma, B.R.M., Martini, S., Gautier-Wong, E., Chen, K.Y., & Friedl, K.E. (2020). Human performance research for military operations in extreme cold environments. Journal of Science and Medicine in Sport. Advance online publication. https://doi.org/10.1016/j.jsams.2020.11.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor, D.J., Bore, P.J., Styles, P., Gadian, D.G., & Radda, G.K. (1983). Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Molecular Biology and Medicine, 1(1), 7794. PubMed ID: 6679873

    • Search Google Scholar
    • Export Citation
  • Tidball, J.G. (2011). Mechanisms of muscle injury, repair, and regeneration. Comprehensive Physiology, 1(4), 2029–2062. https://doi.org/10.1002/cphy.c100092

    • Search Google Scholar
    • Export Citation
  • Tyndall, A.V., Clark, C.M., Anderson, T.J., Hogan, D.B., Hill, M.D., Longman, R.S., & Poulin, M.J. (2018). Protective effects of exercise on cognition and brain health in older adults. Exercise and Sport Sciences Reviews, 46(4), 215–223. https://doi.org/10.1249/jes.0000000000000161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umberger, B.R., & Rubenson, J. (2011). Understanding muscle energetics in locomotion. Exercise and Sport Sciences Reviews, 39(2), 59-67. https://doi.org/10.1097/JES.0b013e31820d7bc5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verschueren, S.M., Roelants, M., Delecluse, C., Swinnen, S., Vanderschueren, D., & Boonen, S. (2003). Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: A randomized controlled pilot study. Journal of Bone and Mineral Research, 19(3), 352–359. https://doi.org/10.1359/JBMR.0301245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welly, R.J., Liu, T.-W., Zido, T.M., Rowles, J.L., Park, Y.-M., Smith, T.N., Swanson, K. S., Padilla, J., & Viera-Potter, V.J. (2016). Comparison of diet versus exercise on metabolic function and gut microbiota in obese rats. Medicine & Science in Sports & Exercise, 48(9), 1688–1698. https://doi.org/10.1249/mss.0000000000000964

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C.J., Williams, M.G., Eynon, N., Ashton, K.J., Little, J.P., Wisloff, U., & Coombes, J.S. (2017). Genes to predict VO2max trainability: a systematic review. BMC Genomics, 18(S8), Article 831. https://doi.org/10.1186/s12864-017-4192-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, S.P., Hall Brown, T.S., Collier, S.R., & Sandberg, K. (2017). How consumer physical activity monitors could transform human physiology research. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 312(3), R358–R367. https://doi.org/10.1152/ajpregu.00349.2016

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., Zhao, Z.-H., Fan, X.-H., Li, W.-H., & Chen, Z. (2021). Different training durations and frequencies of Tai Chi for bone mineral density improvement: A systematic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2021, Article 6665642. https://doi.org/10.1155/2021/6665642

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 10039 2439 433
Full Text Views 1162 618 2
PDF Downloads 670 43 2