Motor Control: Creating a Natural Science of Biological Movement

Click name to view affiliation

Mark L. Latash
Search for other papers by Mark L. Latash in
Current site
Google Scholar
PubMed
Close
Restricted access

Motor control is a young and aspiring field of natural science. Over the past 40 years, it has become an established field of study with several important theoretical developments, including the equilibrium-point hypothesis and its more recent version known as the control with referent spatial coordinates, the principle of abundance, the uncontrolled manifold hypothesis, and the concept of dynamic neural field as the means of task formulation. Important experimental advances have included the exploration of the notion of synergies, the links between descending signals from the brain and referent coordinates of the effectors, and applications of motor control principles to analysis of disordered movements. Further maturation of motor control requires focusing on theory-driven studies. It promises fruitful applications to applied fields such as movement disorders and rehabilitation.

The author (mll11@psu.edu) is with the Dept. of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA.

  • Collapse
  • Expand
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience, 315, 150161. PubMed ID: 26701299 https://doi.org/10.1016/j.neuroscience.2015.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1935). The problem of interrelation between coordination and localization. Archives of Biological Science, 38, 135 (in Russian).

    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1947/2020). On the construction of movements. Medgiz: Moscow (in Russian). In M.L. Latash (Trans Ed.), Bernstein’s construction of movements (pp. 1220). Routledge.

    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1967). The co-ordination and regulation of movements. Pergamon Press.

  • Calota, A., Feldman, A.G., & Levin, M.F. (2008). Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clinical Neurophysiology, 119(10), 23292337. PubMed ID: 18762451 https://doi.org/10.1016/j.clinph.2008.07.215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chvatal, S.A., Macpherson, J.M., Torres-Oviedo, G., & Ting, L.H. (2013). Absence of postural muscle synergies for balance after spinal cord transection. Journal of Neurophysiology, 110(6), 13011310. PubMed ID: 23803327 https://doi.org/10.1152/jn.00038.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuadra, C., Wojnicz, W., Kozinc, Z., & Latash, M.L. (2020). Perceptual and motor effects of muscle co-activation in a force production task. Neuroscience, 437, 3444. PubMed ID: 32335217 https://doi.org/10.1016/j.neuroscience.2020.04.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Freitas, P.B., Freitas, S.M.S.F., Lewis, M.M., Huang, X., & Latash, M.L. (2019). Individual preferences in motor coordination seen across the two hands: Relations to movement stability and optimality. Experimental Brain Research, 237(1), 113. PubMed ID: 30298294 https://doi.org/10.1007/s00221-018-5393-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrichsen, J., Shadmehr, R., & Ivry, R.B. (2010). The coordination of movement: Optimal feedback control and beyond. Trends in Cognitive Science, 14(1), 3139. https://doi.org/10.1016/j.tics.2009.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Reviews, 109(3), 545572. https://doi.org/10.1037/0033-295X.109.3.545

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falaki, A., Huang, X., Lewis, M.M., & Latash, M.L. (2017). Dopaminergic modulation of multi-muscle synergies in postural tasks performed by patients with Parkinson’s disease. Journal of Electromyography and Kinesiology, 33, 2026. PubMed ID: 28110044 https://doi.org/10.1016/j.jelekin.2017.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falaki, A., Jo, H.J., Lewis, M.M., O’Connell, B., De Jesus, S., McInerney, J., . . . Latash, M.L. (2018). Systemic effects of deep brain stimulation on synergic control in Parkinson’s disease. Clinical Neurophysiology, 129(6), 13201332. PubMed ID: 29573980 https://doi.org/10.1016/j.clinph.2018.02.126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics, 11, 565578.

    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1980). Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience, 5(1), 8190. PubMed ID: 7366845 https://doi.org/10.1016/0306-4522(80)90073-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1986). Once more on the equilibrium-point hypothesis (λ-model) for motor control. Journal of Motor Behavior, 18(1), 1754. PubMed ID: 15136283 https://doi.org/10.1080/00222895.1986.10735369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2015). Referent control of action and perception: Challenging conventional theories in behavioral science. Springer.

  • Feldman, A.G. (2019). Indirect, referent control of motor actions underlies directional tuning of neurons. Journal of Neurophysiology, 121(3), 823841. PubMed ID: 30565957 https://doi.org/10.1152/jn.00575.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., & Levin, M.F. (1995). Positional frames of reference in motor control: Their origin and use. Behavioral and Brain Sciences, 18(4), 723744. https://doi.org/10.1017/S0140525X0004070X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., & Orlovsky, G.N. (1972). The influence of different descending systems on the tonic stretch reflex in the cat. Experimental Neurology, 37(3), 481494. PubMed ID: 4650889 https://doi.org/10.1016/0014-4886(72)90091-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelfand, I.M., & Latash, M.L. (1998). On the problem of adequate language in motor control. Motor Control, 2(4), 306313. PubMed ID: 9758883 https://doi.org/10.1123/mcj.2.4.306

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgopoulos, A.P., & Carpenter, A.F. (2015). Coding of movements in the motor cortex. Current Opinions in Neurobiology, 33, 3439. https://doi.org/10.1016/j.conb.2015.01.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgopoulos, A.P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science, 256(5064), 16921695. PubMed ID: 1609282 https://doi.org/10.1126/science.256.5064.1692

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgopoulos, A.P., Schwartz, A.B., & Kettner, R.E. (1986). Neural population coding of movement direction. Science, 233(4771), 14161419. PubMed ID: 3749885 https://doi.org/10.1126/science.3749885

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghez, C., Hening, W., & Gordon, J. (1991). Organization of voluntary movement. Current Opinion in Neurobiology, 1(4), 664671. PubMed ID: 1822314 https://doi.org/10.1016/S0959-4388(05)80046-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J.J. (1979). The ecological approach to visual perception. Houghton Mifflin.

  • Gottlieb, G.L., Corcos, D.M., & Agarwal, G.C. (1989). Strategies for the control of voluntary movements with one mechanical degree of freedom. Behavioral and Brain Sciences, 12(2), 189210. https://doi.org/10.1017/S0140525X00048238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gribble, P.L., Ostry, D.J., Sanguineti, V., & Laboissiere, R. (1998). Are complex control signals required for human arm movements? Journal of Neurophysiology, 79(3), 14091424. PubMed ID: 9497421 https://doi.org/10.1152/jn.1998.79.3.1409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinder, M.R., & Milner, T.E. (2003). The case for an internal dynamics model versus equilibrium point control in human movement. Journal of Physiology, 549(3), 953963. https://doi.org/10.1113/jphysiol.2002.033845

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilmane, N., Sangani, S., & Feldman, A.G. (2013). Corticospinal control strategies underlying voluntary and involuntary wrist movements. Behavioral and Brain Research, 236, 350358. https://doi.org/10.1016/j.bbr.2012.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Dominici, N., & Lacquaniti, F. (2007). Development of independent walking in toddlers. Exercise and Sport Science Reviews, 35(2), 6773. https://doi.org/10.1249/JES.0b013e31803eafa8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Dominici, N., Cappellini, G., Di Paolo, A., Giannini, C., Poppele, R.E., & Lacquaniti, F. (2013). Changes in the spinal segmental motor output for stepping during development from infant to adult. Journal of Neuroscience, 33(7), 30253036. PubMed ID: 23407959 https://doi.org/10.1523/JNEUROSCI.2722-12.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2009). Distributed neural networks for controlling human locomotion: Lessons from normal and SCI subjects. Brain Research Bulletin, 78(1), 1321. PubMed ID: 19070781 https://doi.org/10.1016/j.brainresbull.2008.03.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jobin, A., & Levin, M.F. (2000). Regulation of stretch reflex threshold in elbow flexors in children with cerebral palsy: A new measure of spasticity. Developmental Medicine and Child Neurology, 42(8), 531540. PubMed ID: 10981931 https://doi.org/10.1017/S0012162200001018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinions in Neurobiology, 9(6), 718727. https://doi.org/10.1016/S0959-4388(99)00028-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kugler, P.N., & Turvey, M.T. (1987). Information, natural law, and the self-assembly of rhythmic movement. Lawrence Erlbaum Associates Publ.

    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2021). Laws of nature that define biological action and perception. Physics of Life Reviews, 36, 4767, PubMed ID: 32868159 https://doi.org/10.1016/j.plrev.2020.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (1993). Control of human movement. Human Kinetics.

  • Latash, M.L. (2008). Synergy. Oxford University Press.

  • Latash, M.L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14(3), 294322. PubMed ID: 20702893 https://doi.org/10.1123/mcj.14.3.294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217(1), 15. PubMed ID: 22246105 https://doi.org/10.1007/s00221-012-3000-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2019). Physics of biological action and perception. Academic Press.

  • Latash, M.L., & Gottlieb, G.L. (1991). Reconstruction of elbow joint compliant characteristics during fast and slow voluntary movements. Neuroscience, 43(2–3), 697712. PubMed ID: 1922790 https://doi.org/10.1016/0306-4522(91)90328-L

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Huang, X. (2015). Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience, 301, 3948. PubMed ID: 26047732 https://doi.org/10.1016/j.neuroscience.2015.05.075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Shim, J.K., Smilga, A.V., & Zatsiorsky, V.M. (2005). A central back-coupling hypothesis on the organization of motor synergies: A physical metaphor and a neural model. Biological Cybernetics, 92, 186191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Zatsiorsky, V.M. (2016). Biomechanics and motor control: Defining central concepts. Academic Press.

  • Latash, M.L., Scholz, J.P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276308. PubMed ID: 17715460 https://doi.org/10.1123/mcj.11.3.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, M.F., & Feldman, A.G. (1994). The role of stretch reflex threshold regulation in normal and impaired motor control. Brain Research, 657(1-2), 2330. PubMed ID: 7820623 https://doi.org/10.1016/0006-8993(94)90949-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J.R., Budgeon, M.K., Zatsiorsky, V.M., & Latash, M.L. (2011). Stabilization of the total force in multi-finger pressing tasks studied with the ‘inverse piano’ technique. Human Movement Science, 30(3), 446458. PubMed ID: 21450360 https://doi.org/10.1016/j.humov.2010.08.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, V., Scholz, J.P., & Schöner, G. (2009). Redundancy, self-motion, and motor control. Neural Computations, 21(5), 13711414. https://doi.org/10.1162/neco.2008.01-08-698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullick, A.A., Musampa, N.K., Feldman, A.G., & Levin, M.F. (2013). Stretch reflex spatial threshold measure discriminates between spasticity and rigidity. Clinical Neurophysiology, 124(4), 740751. PubMed ID: 23146713 https://doi.org/10.1016/j.clinph.2012.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Lewis, M.M., Huang, X., & Latash, M.L. (2014). Dopaminergic modulation of motor coordination in Parkinson’s disease. Parkinsonism and Related Disorders, 20(1), 6468. PubMed ID: 24090949 https://doi.org/10.1016/j.parkreldis.2013.09.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Zatsiorsky, V.M., & Latash, M.L. (2010). Optimality vs. variability: An example of multi-finger redundant tasks. Experimental Brain Research, 207(1–2), 119132. PubMed ID: 20949262 https://doi.org/10.1007/s00221-010-2440-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prilutsky, B.I., & Zatsiorsky, V.M. (2002). Optimization-based models of muscle coordination. Exercise and Sport Science Reviews, 30(1), 3238. https://doi.org/10.1097/00003677-200201000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raptis, H., Burtet, L., Forget, R., & Feldman, A.G. (2010). Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: Possible involvement of corticospinal pathways. Journal of Physiology, 588(9), 15511570. https://doi.org/10.1113/jphysiol.2009.186858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Latash, M.L. (2018). Stability of hand force production: II. Ascending and descending synergies. Journal of Neurophysiology, 120(3), 10451060. PubMed ID: 29873618 10.1152/jn.00045.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, M., Lins, J., & Schöner, G. (2017). A neural dynamic model generates descriptions of object-oriented actions. Topics in Cognitive Science, 9(1), 3547. PubMed ID: 28054458 https://doi.org/10.1111/tops.12240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santello, M., & Lang, C.E. (2015). Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic. Frontiers in Human Neuroscience, 8, 1050. PubMed ID: 25610391 https://doi.org/10.3389/fnhum.2014.01050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289306. PubMed ID: 10382616 https://doi.org/10.1007/s002210050738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöner, G. (1995). Recent developments and problems in human movement science and their conceptual implications. Ecological Psychology, 7(4), 291314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöner, G., & Thelen, E. (2006). Using dynamic field theory to rethink infant habituation. Psychological Reviews, 113(2), 273299. https://doi.org/10.1037/0033-295X.113.2.273

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seif-Naraghi, A.H., & Winters, J.M. (1990). Optimized strategies for scaling goal-directed dynamic limb movements. In J.M. Winters & S.L.-Y. Woo (Eds.), Multiple muscle systems: Biomechanics and movement organization (pp. 312334). Springer-Verlag.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadmehr, R., & Wise, S.P. (2005). The computational neurobiology of reaching and pointing. MIT Press.

  • Spirduso, W.W. (1981). The emergence of research in motor control and learning. In G.A. Brooks (Ed.), Perspectives on the academic discipline of physical education (pp. 257272). Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Stelmach, G.E., Diggles, V.A., Szendrovits, L.D., & Hughes, B.G. (1981). Current and prospective issues in motor behavior. In G.A. Brooks (Ed.), Perspectives on the academic discipline of physical education (pp. 273300). Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Subramanian, S.K., Feldman, A.G., & Levin, M.F. (2018). Spasticity may obscure motor learning ability after stroke. Journal of Neurophysiology, 119(1), 520. PubMed ID: 28904099 https://doi.org/10.1152/jn.00362.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, L.H. (2007). Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture. Progress of Brain Research, 165, 299321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tresch, M.C., Cheung, V.C., & d’Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95(4), 21992212. PubMed ID: 16394079 https://doi.org/10.1152/jn.00222.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turpin, N.A., Feldman, A.G., & Levin, M.F. (2017). Stretch-reflex threshold modulation during active elbow movements in post-stroke survivors with spasticity. Clinical Neurophysiology, 128(10), 18911897. PubMed ID: 28826019 https://doi.org/10.1016/j.clinph.2017.07.411

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turvey, M.T. (1990). Coordination. American Psychologist, 45(8), 938953. https://doi.org/10.1037/0003-066X.45.8.938

  • Turvey, M.T. (2007). Action and perception at the level of synergies. Human Movement Science, 26(4), 657697. PubMed ID: 17604860 https://doi.org/10.1016/j.humov.2007.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, W.H. (2006). The dynamics of perception and action. Psychological Reviews, 113(2), 358389. https://doi.org/10.1037/0033-295X.113.2.358

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolpert, D.M., Miall, R.C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Science, 2(9), 338347. https://doi.org/10.1016/S1364-6613(98)01221-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., Feldman, A.G., & Levin, M.F. (2018). Vestibular and corticospinal control of human body orientation in the gravitational field. Journal of Neurophysiology, 120(6), 30263041. PubMed ID: 30207862 https://doi.org/10.1152/jn.00483.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5968 1413 676
Full Text Views 869 530 0
PDF Downloads 345 8 0