The Human Genome, Physical Activity, Fitness, and Health

Click name to view affiliation

Claude Bouchard Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA

Search for other papers by Claude Bouchard in
Current site
Google Scholar
PubMed
Close
*
Restricted access

A summary of the evidence for a contribution of genetic variability to physical activity–related traits is presented. The availability of a reference human DNA sequence has made it possible to screen individuals and populations for the presence of genomic differences. Even though more than 100 million DNA variants have been identified, human beings share a genomic sequence, which is more than 99% identical. Four major lessons can be derived from ongoing genomic and genetic studies. First, the connection between a genotype and a phenotype is highly complex. Second, the expression of genes is regulated via multiple interacting mechanisms. Third, redundancy and compensatory mechanisms are ubiquitous. Fourth, complex, multifactorial traits are influenced by polygenic systems defined by hundreds and thousands of loci with most alleles characterized by very small effect sizes. The contribution of genetic variability is briefly summarized for human longevity, common chronic diseases, physical activity level, cardiorespiratory fitness in the sedentary state, and in response to exercise programs.

  • Collapse
  • Expand
  • Aasdahl, L., Nilsen, T.I.L., Meisingset, I., Nordstoga, A.L., Evensen, K.A.I., Paulsen, J., Mork P.J., & Skarpsno, E.S. (2021). Genetic variants related to physical activity or sedentary behaviour: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 18(1), 15. https://doi.org/10.1186/s12966-020-01077-5

    • Search Google Scholar
    • Export Citation
  • Acuna-Hidalgo, R., Veltman, J.A., & Hoischen, A. (2016). New insights into the generation and role of de novo mutations in health and disease. Genome Biology, 17(1), 241. https://doi.org/10.1186/s13059-016-1110-1

    • Search Google Scholar
    • Export Citation
  • Albers, P.K., & McVean, G. (2020). Dating genomic variants and shared ancestry in population-scale sequencing data. PLoS Biology, 18(1), Article e3000586. https://doi.org/10.1371/journal.pbio.3000586

    • Search Google Scholar
    • Export Citation
  • An, P., Perusse, L., Rankinen, T., Borecki, I.B., Gagnon, J., Leon, A.S., Skinner, J.S., Wilmore, J.H., Bouchard, C., & Rao, D.C. (2003). Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: The HERITAGE family study. International Journal of Sports Medicine, 24(1), 5762. https://doi.org/10.1055/s-2003-37200

    • Search Google Scholar
    • Export Citation
  • An, P., Rice, T., Gagnon, J., Leon, A.S., Skinner, J.S., Bouchard, C., Rao, D.C., & Wilmore, J.H. (2000). Familial aggregation of stroke volume and cardiac output during submaximal exercise: The HERITAGE Family Study. International Journal of Sports Medicine, 21(8), 566572. https://doi.org/10.1055/s-2000-12983

    • Search Google Scholar
    • Export Citation
  • Avila, J.J., Kim, S.K., & Massett, M.P. (2017). Differences in exercise capacity and responses to training in 24 inbred mouse strains. Frontiers in Physiology, 8, 974. https://doi.org/10.3389/fphys.2017.00974

    • Search Google Scholar
    • Export Citation
  • Bauman, A.E., Reis, R.S., Sallis, J.F., Wells, J.C., Loos, R.J., Martin, B.W., & Lancet Physical Activity Series Working Group. (2012). Correlates of physical activity: Why are some people physically active and others not? The Lancet, 380(9838), 258271. https://doi.org/10.1016/S0140-6736(12)60735-1

    • Search Google Scholar
    • Export Citation
  • Bellenguez, C., Grenier-Boley, B., & Lambert, J.C. (2020). Genetics of Alzheimer’s disease: Where we are, and where we are going. Current Opinion in Neurobiology, 61, 4048. https://doi.org/10.1016/j.conb.2019.11.024

    • Search Google Scholar
    • Export Citation
  • Borrell, L.N., Elhawary, J.R., Fuentes-Afflick, E., Witonsky, J., Bhakta, N., Wu, A.H.B., Bibbins-Domingo, K., Rodríguez-Santana, J.R., Lenoir, M.A., Gavin, J.R., 3rd, Kittles, R.A., Zaitlen, N.A., Wilkes, D.S., Powe, N.R., Ziv, E., & Burchard, E.G. (2021). Race and genetic ancestry in medicine—A time for reckoning with racism. New England Journal of Medicine, 384(5), 474480. https://doi.org/10.1056/NEJMms2029562

    • Search Google Scholar
    • Export Citation
  • Bouchard, C. (2019). DNA sequence variations contribute to variability in fitness and trainability. Medicine & Science in Sports & Exercise, 51(8), 17811785. https://doi.org/10.1249/MSS.0000000000001976

    • Search Google Scholar
    • Export Citation
  • Bouchard, C. (2021). Genetics of obesity: What we have learned over decades of research. Obesity, 29(5), 802820. https://doi.org/10.1002/oby.23116

    • Search Google Scholar
    • Export Citation
  • Bouchard, C., An, P., Rice, T., Skinner, J.S., Wilmore, J.H., Gagnon, J., Pérusse, L., Leon, A.S., & Rao, D.C. (1999). Familial aggregation of VO2max response to exercise training: Results from the HERITAGE family study. Journal of Applied Physiology, 87(3), 10031008. https://doi.org/10.1152/jappl.1999.87.3.1003

    • Search Google Scholar
    • Export Citation
  • Bouchard, C., Blair, S.N., & Katzmarzyk, P.T. (2015). Less sitting, more physical activity, or higher fitness? Mayo Clinic Proceedings, 90(11), 15331540. https://doi.org/10.1016/j.mayocp.2015.08.005

    • Search Google Scholar
    • Export Citation
  • Bouchard, C., Daw, E.W., Rice, T., Perusse, L., Gagnon, J., Province, M.A., Leon, A.S., Rao, D.C., Skinner, J.S., & Wilmore, J.H. (1998). Familial resemblance for VO2max in the sedentary state: The HERITAGE family study. Medicine & Science in Sports & Exercise, 30(2), 252258. https://doi.org/10.1097/00005768-199802000-00013

    • Search Google Scholar
    • Export Citation
  • Bouchard, C., Lesage, R., Lortie, G., Simoneau, J.A., Hamel, P., Boulay, M.R., Pérusse, L, Thériault, G., & Leblanc, C. (1986). Aerobic performance in brothers, dizygotic and monozygotic twins. Medicine & Science in Sports & Exercise, 18(6), 639646. https://www.ncbi.nlm.nih.gov/pubmed/3784876

    • Search Google Scholar
    • Export Citation
  • Bouchard, C., Tremblay, A., Despres, J.P., Theriault, G., Nadeau, A., Lupien, P.J., Moorjani, S., Prudhomme, D., & Fournier, G. (1994). The response to exercise with constant energy intake in identical twins. Obesity Research, 2(5), 400410. https://doi.org/10.1002/j.1550-8528.1994.tb00087.x

    • Search Google Scholar
    • Export Citation
  • Burchard, E.G., Ziv, E., Coyle, N., Gomez, S.L., Tang, H., Karter, A.J., Mountain, J.L., Pérez-Stable, E.J., Sheppard, D., & Risch, N. (2003). The importance of race and ethnic background in biomedical research and clinical practice. New England Journal of Medicine, 348(12), 11701175. https://doi.org/10.1056/NEJMsb025007

    • Search Google Scholar
    • Export Citation
  • Cai, L., Wheeler, E., Kerrison, N.D., Luan, J., Deloukas, P., Franks, P.W., Amiano P., Ardanaz, E., Bonet, C., Fagherazzi, G., Groop, L.C., Kaaks, R., Huerta, J.M., Masala, G., Nilsson, P.M., Overvad, K., Pala, V., Panico, S., Rodriguez-Barranco, M., . . . Wareham, N.J. (2020). Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study. Science Data, 7(1), 393. https://doi.org/10.1038/s41597-020-00716-7

    • Search Google Scholar
    • Export Citation
  • Claussnitzer, M., Cho, J.H., Collins, R., Cox, N.J., Dermitzakis, E.T., Hurles, M.E., Kathiresan, S., Kenny, E.E., Lindgren, C.M., MacArthur, D.G., North, K.N., Plon, S.E., Rehm, H.L., Risch, N., Rotimi, C.N., Shendure, J., Soranzo, N., & McCarthy, M.I. (2020). A brief history of human disease genetics. Nature, 577(7789), 179189. https://doi.org/10.1038/s41586-019-1879-7

    • Search Google Scholar
    • Export Citation
  • Collins, F.S., Doudna, J.A., Lander, E.S., & Rotimi, C.N. (2021). Human molecular genetics and genomics—Important advances and exciting possibilities. New England Journal of Medicine, 384(1), 14. https://doi.org/10.1056/NEJMp2030694

    • Search Google Scholar
    • Export Citation
  • Deelen, J., Evans, D.S., Arking, D.E., Tesi, N., Nygaard, M., Liu, X., Wojczynski, M.K., Biggs, M.L., van der Spek, A., Atzmon, G., Ware, E.B., Sarnowski, C., Smith, A.V., Seppälä, I., Cordell, H.J., Dose, J., Amin, N., Arnold, A.M., Ayers, K.L., . . . Murabito, J.M. (2019). A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications, 10(1), 3669. https://doi.org/10.1038/s41467-019-11558-2

    • Search Google Scholar
    • Export Citation
  • Doherty, A., Smith-Byrne, K., Ferreira, T., Holmes, M.V., Holmes, C., Pulit, S.L., & Lindgren, C.M. (2018). GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nature Communications, 9(1), 5257. https://doi.org/10.1038/s41467-018-07743-4

    • Search Google Scholar
    • Export Citation
  • Erdmann, J., Kessler, T., Munoz Venegas, L., & Schunkert, H. (2018). A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovascular Research, 114(9), 12411257. https://doi.org/10.1093/cvr/cvy084

    • Search Google Scholar
    • Export Citation
  • Gaskill, S.E., Rice, T., Bouchard, C., Gagnon, J., Rao, D.C., Skinner, J.S., Wilmore, J.H., & Leon, A.S. (2001). Familial resemblance in ventilatory threshold: The HERITAGE family study. Medicine & Science in Sports & Exercise, 33(11), 18321840. https://doi.org/10.1097/00005768-200111000-00006

    • Search Google Scholar
    • Export Citation
  • Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., & Abecasis, G.R. (2015). A global reference for human genetic variation. Nature, 526(7571), 6874. https://doi.org/10.1038/nature15393

    • Search Google Scholar
    • Export Citation
  • Hamel, P., Simoneau, J.A., Lortie, G., Boulay, M.R., & Bouchard, C. (1986). Heredity and muscle adaptation to endurance training. Medicine & Science in Sports & Exercise, 18(6), 690696. https://www.ncbi.nlm.nih.gov/pubmed/3784881

    • Search Google Scholar
    • Export Citation
  • Jobling, M.A. (2013). Human evolutionary genetics (2nd ed.). Garland Science.

  • Koch, L.G., & Britton, S.L. (2018). Theoretical and biological evaluation of the link between low exercise capacity and disease risk. Cold Spring Harbor Perspectives in Medicine, 8(1), Article a029868. https://doi.org/10.1101/cshperspect.a029868

    • Search Google Scholar
    • Export Citation
  • Koch, L.G., Pollott, G.E., & Britton, S.L. (2013). Selectively bred rat model system for low and high response to exercise training. Physiological Genomics, 45(14), 606614. https://doi.org/10.1152/physiolgenomics.00021.2013

    • Search Google Scholar
    • Export Citation
  • Lightfoot, J.T., de Geus, E.J.C., Booth, F.W., Bray, M.S., den Hoed, M., Kaprio, J., Kelly, S.A., Pomp, D., Saul, M.C., Thomis, M.A., Garland, T., Jr., & Bouchard, C. (2018). Biological/genetic regulation of physical activity level: Consensus from GenBioPAC. Medicine & Science in Sports & Exercise, 50(4), 863873. https://doi.org/10.1249/MSS.0000000000001499

    • Search Google Scholar
    • Export Citation
  • Lightfoot, J.T., Turner, M.J., Debate, K.A., & Kleeberger, S.R. (2001). Interstrain variation in murine aerobic capacity. Medicine & Science in Sports & Exercise, 33(12), 20532057. https://doi.org/10.1097/00005768-200112000-00012

    • Search Google Scholar
    • Export Citation
  • Lip, S., & Padmanabhan, S. (2020). Genomics of blood pressure and hypertension: Extending the mosaic theory toward stratification. Canadian Journal of Cardiology, 36(5), 694705. https://doi.org/10.1016/j.cjca.2020.03.001

    • Search Google Scholar
    • Export Citation
  • Massett, M.P., Avila, J.J., & Kim, S.K. (2015). Exercise capacity and response to training quantitative trait loci in a NZW X 129S1 intercross and combined cross analysis of inbred mouse strains. PLoS One, 10(12), Article e0145741. https://doi.org/10.1371/journal.pone.0145741

    • Search Google Scholar
    • Export Citation
  • Meek, T.H., Lonquich, B.P., Hannon, R.M., & Garland, T., Jr. (2009). Endurance capacity of mice selectively bred for high voluntary wheel running. Journal of Experimental Biology, 212(18), 29082917. https://doi.org/10.1242/jeb.028886

    • Search Google Scholar
    • Export Citation
  • Mills, M.C., & Rahal, C. (2019). A scientometric review of genome-wide association studies. Communications Biology, 2(1), 9. https://doi.org/10.1038/s42003-018-0261-x

    • Search Google Scholar
    • Export Citation
  • O’Rahilly, S. (2021). “Treasure Your Exceptions”—Studying human extreme phenotypes to illuminate metabolic health and disease: The 2019 banting medal for scientific achievement lecture. Diabetes, 70(1), 2938. https://doi.org/10.2337/dbi19-0037

    • Search Google Scholar
    • Export Citation
  • Peeters, M.W., Thomis, M.A., Maes, H.H., Beunen, G.P., Loos, R.J., Claessens, A.L., & Vlietinck, R. (2005). Genetic and environmental determination of tracking in static strength during adolescence. Journal of Applied Physiology, 99(4), 13171326. https://doi.org/10.1152/japplphysiol.00021.2005

    • Search Google Scholar
    • Export Citation
  • Perusse, L., Gagnon, J., Province, M.A., Rao, D.C., Wilmore, J.H., Leon, A.S., Bouchard, C, & Skinner, J.S. (2001). Familial aggregation of submaximal aerobic performance in the HERITAGE family study. Medicine & Science in Sports & Exercise, 33(4), 597604. https://doi.org/10.1097/00005768-200104000-00014

    • Search Google Scholar
    • Export Citation
  • Pescatello, L.S., Devaney, J.M., Hubal, M.J., Thompson, P.D., & Hoffman, E.P. (2013). Highlights from the functional single nucleotide polymorphisms associated with human muscle size and strength or FAMuSS study. BioMed Research International, 2013, Article 643575. https://doi.org/10.1155/2013/643575

    • Search Google Scholar
    • Export Citation
  • Pilling, L.C., Kuo, C.L., Sicinski, K., Tamosauskaite, J., Kuchel, G.A., Harries, L.W., Herd, P., Wallace, R., Ferrucci, L., & Melzer, D. (2017). Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. Aging, 9(12), 25042520. https://doi.org/10.18632/aging.101334

    • Search Google Scholar
    • Export Citation
  • Prud’homme, D., Bouchard, C., Leblanc, C., Landry, F., & Fontaine, E. (1984). Sensitivity of maximal aerobic power to training is genotype-dependent. Medicine & Science in Sports & Exercise, 16(5), 489493. https://doi.org/10.1249/00005768-198410000-00012

    • Search Google Scholar
    • Export Citation
  • Rankinen, T., Argyropoulos, G., Rice, T., Rao, D.C., & Bouchard, C. (2010). CREB1 is a strong genetic predictor of the variation in exercise heart rate response to regular exercise: The HERITAGE family study. Circulation: Cardiovascular Genetics, 3(3), 294299. https://doi.org/10.1161/CIRCGENETICS.109.925644

    • Search Google Scholar
    • Export Citation
  • Rankinen, T., Bouchard, C., & Rao, D.C. (2005). Corrigendum: Familial resemblance for muscle phenotypes: The HERITAGE family study. Medicine & Science in Sports & Exercise, 37(11), 2017. https://doi.org/10.1249/01.mss.0000187331.44005.d9

    • Search Google Scholar
    • Export Citation
  • Rankinen, T., Sung, Y.J., Sarzynski, M.A., Rice, T.K., Rao, D.C., & Bouchard, C. (2012). Heritability of submaximal exercise heart rate response to exercise training is accounted for by nine SNPs. Journal of Applied Physiology, 112(5), 892897. https://doi.org/10.1152/japplphysiol.01287.2011

    • Search Google Scholar
    • Export Citation
  • Rico-Sanz, J., Rankinen, T., Joanisse, D.R., Leon, A.S., Skinner, J.S., Wilmore, J.H., Rao, D.C., Bouchard, C., & HERITAGE Family Study (2003). Familial resemblance for muscle phenotypes in the HERITAGE family study. Medicine & Science in Sports & Exercise, 35(8), 13601366. https://doi.org/10.1249/01.MSS.0000079031.22755.63

    • Search Google Scholar
    • Export Citation
  • Robbins, J.M., Peterson, B., Schranner, D., Tahir, U.A., Rienmuller, T., Deng, S., Keyes, M.J., Katz, D.H., Beltran, P.M.J., Barber, J.L., Baumgartner, C., Carr, S.A., Ghosh, S., Shen, C., Jennings, L.L., Ross, R., Sarzynski, M.A., Bouchard, C., & Gerszten, R.E. (2021). Human plasma proteomic profiles indicative of cardiorespiratory fitness. Nature Metabolism, 3(6), 786797. https://doi.org/10.1038/s42255-021-00400-z

    • Search Google Scholar
    • Export Citation
  • Ruby, J.G., Wright, K.M., Rand, K.A., Kermany, A., Noto, K., Curtis, D., Varner, N., Garrigan, D., Slinkov, D., Dorfman, I., Granka, J.M., Byrnes, J., Myres, N., & Ball, C. (2018). Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics, 210(3), 11091124. https://doi.org/10.1534/genetics.118.301613

    • Search Google Scholar
    • Export Citation
  • Sarzynski, M.A., & Bouchard, C. (2020). World-class athletic performance and genetic endowment. Nature Metabolism, 2(9), 796798. https://doi.org/10.1038/s42255-020-0233-6

    • Search Google Scholar
    • Export Citation
  • Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., & Regev, A. (2015). Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 33(5), 495502. https://doi.org/10.1038/nbt.3192

    • Search Google Scholar
    • Export Citation
  • Schutte, N.M., Nederend, I., Hudziak, J.J., Bartels, M., & de Geus, E.J. (2016). Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption. Physiological Genomics, 48(3), 210219. https://doi.org/10.1152/physiolgenomics.00117.2015

    • Search Google Scholar
    • Export Citation
  • Sebastiani, P., Gurinovich, A., Bae, H., Andersen, S., Malovini, A., Atzmon, G., Villa, F., Kraja, A.T., Ben-Avraham, D., Barzilai, N., Puca, A., & Perls, T.T. (2017). Four genome-wide association studies identify new extreme longevity variants. The Journals of Gerontology, Series A: Biological Sciences & Medical Sciences, 72(11), 14531464. https://doi.org/10.1093/gerona/glx027

    • Search Google Scholar
    • Export Citation
  • Sebastiani, P., Gurinovich, A., Nygaard, M., Sasaki, T., Sweigart, B., Bae, H., Andersen, S.L., Villa, F., Atzmon, G., Christensen, K., Arai, Y., Barzilai, N., Puca, A., Christiansen, L., Hirose, N., & Perls, T.T. (2019). APOE alleles and extreme human longevity. The Journal of Gerontolology, Series A: Biological Sciences & Medical Sciences, 74(1), 4451. https://doi.org/10.1093/gerona/gly174

    • Search Google Scholar
    • Export Citation
  • Simoneau, J.A., Lortie, G., Boulay, M.R., Marcotte, M., Thibault, M.C., & Bouchard, C. (1986). Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training. International Journal of Sports Medicine, 7(3), 167171. https://doi.org/10.1055/s-2008-1025756

    • Search Google Scholar
    • Export Citation
  • Thomaes, T., Thomis, M., Onkelinx, S., Goetschalckx, K., Fagard, R., Lambrechts, D., & Vanhees, L. (2013). Genetic predisposition scores associate with muscular strength, size, and trainability. Medicine & Science in Sports & Exercise, 45(8), 14511459. https://doi.org/10.1249/MSS.0b013e31828983f7

    • Search Google Scholar
    • Export Citation
  • Visscher, P.M., Brown, M.A., McCarthy, M.I., & Yang, J. (2012). Five years of GWAS discovery. American Journal of Human Genetics, 90(1), 724. https://doi.org/10.1016/j.ajhg.2011.11.029

    • Search Google Scholar
    • Export Citation
  • Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A., & Yang, J. (2017). 10 Years of GWAS discovery: Biology, function, and translation. American Journal of Human Genetics, 101(1), 522. https://doi.org/10.1016/j.ajhg.2017.06.005

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4771 1266 330
Full Text Views 604 399 1
PDF Downloads 90 15 2