Strategies for the Control of Balance During Locomotion

Click name to view affiliation

Hendrik Reimann
Search for other papers by Hendrik Reimann in
Current site
Google Scholar
PubMed
Close
,
Tyler Fettrow
Search for other papers by Tyler Fettrow in
Current site
Google Scholar
PubMed
Close
, and
John J. Jeka
Search for other papers by John J. Jeka in
Current site
Google Scholar
PubMed
Close
Restricted access

The neural control of balance during locomotion is currently not well understood, even in the light of considerable advances in research on balance during standing. In this paper, we lay out the control problem for this task and present a list of different strategies available to the central nervous system to solve this problem. We discuss the biomechanics of the walking body, using a simplified model that iteratively gains degrees of freedom and complexity. Each addition allows for different control strategies, which we introduce in turn: foot placement shift, ankle strategy, hip strategy, and push-off modulation. The dynamics of the biomechanical system are discussed using the phase space representation, which allows illustrating the mechanical effect of the different control mechanisms. This also enables us to demonstrate the effects of common general stability strategies, such as increasing step width and cadence.

Reimann, Fettrow, and Jeka are with the Dept. of Kinesiology and Applied Physiology, University of Delaware, Newark, DE.

Address author correspondence to Hendrik Reimann at hendrik.reimann@udel.edu.
  • Collapse
  • Expand
  • Bauby, C.E., & Kuo, A.D. (2000). Active control of lateral balance in human walking. Journal of Biomechanics, 33(11), 14331440. PubMed doi:10.1016/S0021-9290(00)00101-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bent, L., McFadyen, B., Merkley, V., Kennedy, P., & Inglis, T. (2000). Magnitude effects of galvanic vestibular stimulation on the trajectory of human gait. Neuroscience Letters, 279(3), 157160. PubMed doi:10.1016/S0304-3940(99)00989-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruijn, S.M., Bregman, D.J.J., Meijer, O.G., Beek, P.J., & van Dieen, J.H. (2012). Maximum lyapunov exponents as predictors of global gait stability: A modelling approach. Medical Engineering and Physics, 34(4), 428436. PubMed doi:10.1016/j.medengphy.2011.07.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruijn, S.M., van Dieen, J.H., Meijer, O.G., & Beek, P.J. (2009). Is slow walking more stable? Journal of Biomechanics, 42(10), 15061512. PubMed doi:10.1016/j.jbiomech.2009.03.047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dean, J.C., & Kautz, S.A. (2015). Foot placement control and gait instability among people with stroke. Journal of Rehabilitation Research and Development, 52(5), 577590. PubMed doi:10.1682/JRRD.2014.09.0207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dingwell, J.B., & Marin, L.C. (2006). Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. Journal of Biomechanics, 39(3), 444452. PubMed doi:10.1016/j.jbiomech.2004.12.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, J.M., Kram, R., & Kuo, A.D. (2001). Mechanical and metabolic determinants of the preferred step width in human walking. Proceedings of the Royal Society B: Biological Sciences, 268(1480), 19851992. PubMed doi:10.1098/rspb.2001.1761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381391. PubMed doi:10.1037/h0055392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, P.A., Vlutters, M., Dakin, C.J., van der Kooij, H., Blouin, J.-S., & Schouten, A.C. (2017). Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion. The Journal of Physiology, 595(6), 21752195. PubMed doi:10.1113/JP272614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, H. & Herr, H. (2010). A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 263273. PubMed doi:10.1109/TNSRE.2010.2047592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haran, F. & Keshner, E. (2009). Sensory reweighting as a method of balance training for labyrinthine loss. Journal of Neurologic Physical Therapy, 32(4), 186191. doi:10.1097/NPT.0b013e31818dee39

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hof, A.L. & Duysens, J. (2013). Responses of human hip abductor muscles to lateral balance perturbations during walking. Experimental Brain Research, 230(3), 301310. PubMed doi:10.1007/s00221-013-3655-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hof, A.L., Gazendam, M.G.J., & Sinke, W.E. (2005). The condition for dynamic stability. Journal of Biomechanics, 38(1), 18. PubMed doi:10.1016/j.jbiomech.2004.03.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hof, A.L., van Bockel, R.M., Schoppen, T., & Postema, K. (2007). Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees. Gait & Posture, 25(2), 250258. PubMed doi:10.1016/j.gaitpost.2006.04.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, W.-L., Scholz, J.P., Schöner, G., Jeka, J.J., & Kiemel, T. (2007). Control and estimation of posture during quiet stance depends on multijoint coordination. Journal of Neurophysiology, 97(4), 30243035. PubMed doi:10.1152/jn.01142.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. 2003 IEEE International Conference on Robotics and Automation, 2, 16201626.

    • Search Google Scholar
    • Export Citation
  • Kang, H.G. & Dingwell, J.B. (2008). Separating the effects of age and walking speed on gait variability. Gait & Posture, 27(4), 572577. PubMed doi:10.1016/j.gaitpost.2007.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M. & Collins, S.H. (2013). Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control. IEEE International Conference on Rehabilitation Robotics.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim, M. & Collins, S.H. (2015). Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking. Journal of NeuroEngineering and Rehabilitation, 12(1), 43. doi:10.1186/s12984-015-0027-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, A.D. (1999). Stabilization of lateral motion in passive dynamic walking. The International Journal of Robotics Research, 18(9), 917930. doi:10.1177/02783649922066655

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, A.D. & Zajac, F.E. (1993). Human standing posture: Multi-joint movement strategies based on biomechanical constraints. Progress in Brain Research, 97(C), 349358. doi:10.1016/S0079-6123(08)62294-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAndrew, P.M., Dingwell, J.B., & Wilken, J.M. (2010). Walking variability during continuous pseudo-random oscillations of the support surface and visual field. Journal of Biomechanics, 43(8), 14701475. PubMed doi:10.1016/j.jbiomech.2010.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mergner, T., Maurer, C., & Peterka, R.J. (2003). A multisensory posture control model of human upright stance. Progress in Brain Research, 142(I), 189201. doi:10.1016/S0079-6123(03)42014-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, J.A.& Srinivasan, M. (2017). Walking with wider steps changes foot placement control, increases kinematic variability and does not improve linear stability. Royal Society Open Science, 4(9), 160627. PubMed doi:10.1098/rsos.160627

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterka, R.J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology, 88(3), 10971118. PubMed

  • Pinter, I.J., van Swigchem, R., Van Soest, A.K.J., & Rozendaal, L.A. (2008). The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: A PCA on segment rotations during unperturbed Stance. Journal of Neurophysiology, 100(6), 31973208. PubMed doi:10.1152/jn.01312.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popovic, M.B., Goswami, A., & Herr, H. (2005). Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. The International Journal of Robotics Research, 24(12), 10131032. doi:10.1177/0278364905058363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, J.E., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. 2006 6th IEEE-RAS International Conference on Humanoid Robots, 200207.

    • Search Google Scholar
    • Export Citation
  • Rankin, B.L., Buffo, S.K., & Dean, J.C. (2014). A neuromechanical strategy for mediolateral foot placement in walking humans. Journal of Neurophysiology, 112(2), 374383. PubMed doi:10.1152/jn.00138.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reimann, H., Fettrow, T.D., Thompson, E.D., Agada, P., McFadyen, B., & Jeka, J.J. (2017). Complementary mechanisms for upright balance during walking. PLoS One, 12(2), 116. doi:10.1371/journal.pone.0172215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reimann, H. & Schöner, G. (2017). A multi-joint model of quiet, upright stance accounts for the “uncontrolled manifold” structure of joint variance. Biological Cybernetics, 111, 389403. PubMed doi:10.1007/s00422-017-0733-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roden-Reynolds, D.C., Walker, M.H., Wasserman, C.R., & Dean, J.C. (2015). Hip proprioceptive feedback influences the control of mediolateral stability during human walking. Journal of Neurophysiology, 114(4), 22202229. PubMed doi:10.1152/jn.00551.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenbaum, D.A. (2010). Human motor control. San Diego, CA:Academic Press.

  • Song, S. & Geyer, H. (2015). A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. The Journal of Physiology, 593(16), 34933511. PubMed doi:10.1113/JP270228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, M.A. (1985). Biped gait stabilization via foot placement. Journal of Biomechanics, 18(1), 2138. PubMed doi:10.1016/0021-9290(85)90042-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vlutters, M., van Asseldonk, E.H.F., & van der Kooij, H. (2016). Center of mass velocity-based predictions in balance recovery rollowing pelvis perturbations during human walking. The Journal of Experimental Biology, 219(10), 15141523. doi:10.1242/jeb.129338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., & Srinivasan, M. (2014). Stepping in the direction of the fall: The next foot placement can be predicted from current upper body state in steady-state walking. Biology Letters, 10. PubMed doi:10.1098/rsbl.2014.0405

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, D.A. (1995). Human balance & posture control during standing and walking. Gait & Posture, 3(4), 193214. doi:10.1016/0966-6362(96)82849-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, D.A., Patla, A.E., & Frank, J.S. (1990). Assessment of balance control in humans. Medical Progress Through Technology, 16(1–2), 3151.

    • Search Google Scholar
    • Export Citation
  • Yang, J.-F. & Stein, R.B. (1990). Phase-dependent reflex reversal in human leg muscles during walking. Journal of Neurophysiology, 63(5), 11091117. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4370 1025 73
Full Text Views 139 76 8
PDF Downloads 56 25 0