Motor Patterns Acquired Early in Life, the Brain-Behavior Coalition, and the Importance of Context

in Kinesiology Review
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $41.00

1 year subscription

USD $54.00

Student 2 year subscription

USD $77.00

2 year subscription

USD $101.00

Our goal for this paper is to address changes in motor patterns that occur early in life. To do this, we begin by sharing first a brief set of exemplar patterns of movement that emerge prenatally and during the first year postnatally. We couch these descriptions in the hypotheses proposed to explain what has been observed, and emphasize, as well, the context in which they appear. We follow with some experimental studies developmental scientists have used to test these explanations. Subsequently, we address the brain-behavior collaboration that unfolds and supports skill acquisition across early development. We provide data to show that recent advances in brain-imaging technology enable researchers to monitor cortical activity as infants explore and learn functional skills in real time and over developmental time. This opens a new frontier to the scientific study of the early development of neuromotor control and can enhance both our basic science knowledge and our efforts to optimize positive clinical outcomes.

Nishiyori is with the National Institutes of Health Clinical Center, Bethesda, MD. Ulrich is with the University of Michigan, Ann Arbor, MI.

Address author correspondence to Ryota Nishiyori at ryota.nishiyori@nih.gov.
Kinesiology Review
Article Sections
References
  • AdolphK.E. (1997). Learning in the development of infant locomotion. Monographs of the Society for Research in Child Development 62(3 Serial No. 251) IVI 1–158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AdolphK.E.ColeW.G.KomatiM.GarciaguirreJ.S.BadalyD.LingemanJ.M.SotskyR.B. (2012). How do you learn to walk? Thousands of steps and dozens of falls per day. Psychological Science 23(11) 13871394. PubMed doi:10.1177/0956797612446346

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AdolphK.E.VereijkenB. & DennyM. (1998). Learning to crawl. Child Development 69(5) 12991312. PubMed doi:10.2307/1132267

  • AndersonD.I.KobayashiY.HamelK.RiveraM.CamposJ.J. & Barbu-RothM. (2016). Effects of support surface and optic flow on step-like movements in pre-crawling and crawling infants. Infant Behavior and Development 42104110. PubMed doi:10.1016/j.infbeh.2015.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angulo-KinzlerR.UlrichB.D. & ThelenE. (2002). Three-month-old infants can select specific leg motor solutions. Motor Control 6(1) 5268. PubMed doi:10.1123/mcj.6.1.52

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BayleyN. (1936). The development of motor abilities during the first three years. Monographs of the Society for Research in Child Development 1(1) 126. doi:10.2307/1165480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangC.L.KuboM.BuzziU. & UlrichB. (2006). Early changes in muscle activation patterns of toddlers during walking. Infant Behavior & Development 29(2) 175188. PubMed doi:10.1016/j.infbeh.2005.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangC.L.KuboM. & UlrichB.D. (2009). Emergence of neuromuscular patterns during walking in toddlers with typical development and with Down syndrome. Human Movement Science 28(2) 283296. PubMed doi:10.1016/j.humov.2008.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CorbettaD.FriedmanD.R. & BellM.A. (2014). Brain reorganization as a function of walking experience in 12-month-old infants: Implications for the development of manual laterality. Frontiers in Psychology 5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de HaanM. (2002). Introduction to infant EEG and event-related potentials. In M. de Haan (Ed.) Infant EEG and event-related potentials (pp. 3976). New York, NY: Psychology Press.

    • Search Google Scholar
    • Export Citation
  • de VriesJ.I.P. & FongB.F. (2006). Normal fetal motility: An overview. Ultrasound in Obstetrics & Gynecology 27(6) 701711. PubMed doi:10.1002/uog.2740

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EdelmanG.M. (1993). Neural Darwinism: Selection and reentrant signaling in higher brain function. Neuron 10(2) 115125. PubMed doi:10.1016/0896-6273(93)90304-A

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GallowayJ.C. & ThelenE. (2004). Feet first: Object exploration in young infants. Infant Behavior and Development 27(1) 107112. doi

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoldfieldE.C. (1989). Transition from rocking to crawling: Postural constraints on infant movement. Developmental Psychology 25(6) 913919. doi:10.1037/0012-1649.25.6.913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GonzalezS.L.Reeb-SutherlandB.C. & NelsonE.L. (2016). Quantifying motor experience in the infant brain: EEG power, coherence, and mu desynchronization. Frontiers in Psychology 7216. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HalsbandU. & LangeR.K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology Paris 99(4-6) 414424. doi:10.1016/j.jphysparis.2006.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaydarT.F. & ReevesR.H. (2012). Trisomy 21 and early brain development. Trends in Neuroscience 35(2) 8191. doi:10.1016/j.tins.2011.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ImaiM.WatanabeH.YasuiK.KimuraY.ShitaraY.TsuchidaS.TagaG. (2014). Functional connectivity of the cortex of term and preterm infants and infants with Down’s syndrome. Neuroimage 85272278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KnickmeyerR.C.GouttardS.KangC.EvansD.WilberK.SmithJ.K.GilmoreJ.H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience 28(47) 1217612182. PubMed doi:10.1523/JNEUROSCI.3479-08.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KurjakA.CarreraJ.M.MedicM.AzumendiG.AndonotopoW. & StanojevicM. (2005). The antenatal development of fetal behavioral patterns assessed by four dimensional sonography. Journal of Maternal-Fetal & Neonatal Medicine 17(6) 401416. PubMed doi:10.1080/14767050400029657

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KurzM.J.WilsonT.W. & ArpinD.J. (2012). Stride-time variability and sensorimotor cortical activation during walking. Neuroimage 59(2) 16021607. PubMed doi:10.1016/j.neuroimage.2011.08.084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KurzM.J.WilsonT.W. & ArpinD.J. (2014). An fNIRS exploratory investigation of the cortical activity during gait in children with spastic diplegic cerebral palsy. Brain Development 36(10) 870877. PubMed doi:10.1016/j.braindev.2014.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LoboM.A.GallowayJ.C. & SavelsberghG.J. (2004). General and task-related experiences affect early object interaction. Child Development 75(4) 12681281. PubMed doi:10.1111/j.1467-8624.2004.00738.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LubecG. & EngidaworkE. (2002). The brain in Down syndrome (TRISOMY 21). Journal of Neurology 249(10) 13471356. PubMed doi:10.1007/s00415-002-0799-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrawM. (1963). The neuromuscular maturation of the human infant. New York, NY: Hafner Publishing Company, Inc.

  • MerendonkE.J.BrouwersJ.J.De CatteL.HasaertsD.Nijhuis-van der SandenM.W. & KerckhofsE. (2017). Identification of prenatal behavioral patterns of the gross motor movements within the early stages of fetal development. Infant and Child Development  26(5) 115.

    • Search Google Scholar
    • Export Citation
  • NeuperC.WortzM. & PfurtschellerG. (2006). ERD/ERS patterns reflectingsensorimotor activation and deactivation. Progress in Brain Research 159211222. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NishiyoriR.BaurK.HarrisM.MeehanS.K. & UlrichB.D. (n.d.). Emergence of cortical network activity as infants develop functional motor skills. Manuscript in preparation.

    • Search Google Scholar
    • Export Citation
  • NishiyoriR.BiscontiS.MeehanS.K. & UlrichB.D. (2016). Developmental changes in motor cortex activity as infants develop functional motor skills. Developmental Psychobiology 58(6) 773783. PubMed doi:10.1002/dev.21418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NishiyoriR.BiscontiS. & UlrichB. (2016). Motor cortex activity during functional motor skills: An fNIRS study . Brain Topography 29(1) 4255. PubMed doi:10.1007/s10548-015-0443-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PochonJ.B.LevyR.PolineJ.B.CrozierS.LehéricyS.PillonB.DuboisJ. (2001). The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions an fMRI study. Cerebral Cortex 11(3) 260266. PubMed doi:10.1093/cercor/11.3.260

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PrechtlH.F.R. (1990). Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Human Development 23(3) 151158. PubMed doi:10.1016/0378-3782(90)90011-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PurpuraD.P. (1974). Dendritic spine“ dysgenesis” and mental retardation. Science 186(4169) 11261128. PubMed doi:10.1126/science.186.4169.1126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReisslandN.FrancisB.AydinE.MasonJ. & SchaalB. (2013). The development of anticipation in the fetus: A longitudinal account of human fetal mouth movements in reaction to and anticipation of touch. Developmental Psychobiology 56(5) 955963. PubMed doi:10.1002/dev.21172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RoveeC.K. & RoveeD.T. (1969). Conjugate reinforcement of infant exploratory behavior. Journal of Experimental Child Psychology 8(1) 3339. PubMed doi:10.1016/0022-0965(69)90025-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SpornsO. & EdelmanG.M. (1993). Solving Bernstein’s problem: A proposal for the development of coordinated movement by selection. Child Development 64(4) 960981. PubMed doi:10.2307/1131321

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThelenE. & UlrichB.D. (1991). Hidden skills: A dynamic systems analysis of treadmill stepping during the first year. Monographs of the Society for Research in Child Development 56(1 Serial No. 223) 198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TianF.DelgadoM.R.DhamneS.C.KhanB.AlexandrakisG.RomeroM.I.LiuH. (2010). Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy. Optics Express 18(25) 2597325986. PubMed doi:10.1364/OE.18.025973

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der MeerA. (1997). Keeping the arm in the limelight: Advanced visual control of arm movements in neonates. European Journal of Paediatric Neurology 1(4) 103108. doi:10.1016/S1090-3798(97)80040-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der MeerA.van der WeelF. & LeeD. (1996). Lifting weights in neonates: Developing visual control of reaching. Scandinavian Journal of Psychology 37(4) 424436. PubMed doi:10.1111/j.1467-9450.1996.tb00674.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanderwertR.E. & NelsonC.A. (2014). The use of near-infrared spectroscopy in the study of typical and atypical development. Neuroimage 85(Pt 1) 264271. doi:10.1016/j.neuroimage.2013.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WatanabeH.HomaeF. & TagaG. (2010). General to specific development of functional activation in the cerebral cortexes of 2- to 3-month-old infants. Neuroimage 50(4) 15361544. PubMed doi:10.1016/j.neuroimage.2010.01.068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilliamsJ.L.CorbettaD. & GuanY. (2015). Learning to reach with “sticky” or “non-sticky” mittens: A tale of developmental trajectories. Infant Behavior & Development 388296. PubMed doi:10.1016/j.infbeh.2015.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WisniewskiK.E. (1990). Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. American Journal of Medical Genetics Part A 37(S7) 274281. doi:10.1002/ajmg.1320370755

    • Crossref
    • Search Google Scholar
    • Export Citation
  • XiaoR.QiX.PatinoA.FaggA.H.KolobeT.H.MillerD.P. & DingL. (2016). Characterization of infant mu rhythm immediately before crawling: A high-resolution EEG study. Neuroimage 1464757. PubMed doi:10.1016/j.neuroimage.2016.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 51 51 8
Full Text Views 1 1 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar