Motor Patterns Acquired Early in Life, the Brain-Behavior Coalition, and the Importance of Context

in Kinesiology Review

Click name to view affiliation

Ryota Nishiyori
Search for other papers by Ryota Nishiyori in
Current site
Google Scholar
PubMed
Close
and
Beverly D. Ulrich
Search for other papers by Beverly D. Ulrich in
Current site
Google Scholar
PubMed
Close
Restricted access

Our goal for this paper is to address changes in motor patterns that occur early in life. To do this, we begin by sharing first a brief set of exemplar patterns of movement that emerge prenatally and during the first year postnatally. We couch these descriptions in the hypotheses proposed to explain what has been observed, and emphasize, as well, the context in which they appear. We follow with some experimental studies developmental scientists have used to test these explanations. Subsequently, we address the brain-behavior collaboration that unfolds and supports skill acquisition across early development. We provide data to show that recent advances in brain-imaging technology enable researchers to monitor cortical activity as infants explore and learn functional skills in real time and over developmental time. This opens a new frontier to the scientific study of the early development of neuromotor control and can enhance both our basic science knowledge and our efforts to optimize positive clinical outcomes.

Nishiyori is with the National Institutes of Health Clinical Center, Bethesda, MD. Ulrich is with the University of Michigan, Ann Arbor, MI.

Address author correspondence to Ryota Nishiyori at ryota.nishiyori@nih.gov.
  • Collapse
  • Expand
  • Adolph, K.E. (1997). Learning in the development of infant locomotion. Monographs of the Society for Research in Child Development, 62(3, Serial No. 251), IVI, 1–158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adolph, K.E., Cole, W.G., Komati, M., Garciaguirre, J.S., Badaly, D., Lingeman, J.M., … Sotsky, R.B. (2012). How do you learn to walk? Thousands of steps and dozens of falls per day. Psychological Science, 23(11), 13871394. PubMed doi:10.1177/0956797612446346

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adolph, K.E., Vereijken, B., & Denny, M. (1998). Learning to crawl. Child Development, 69(5), 12991312. PubMed doi:10.2307/1132267

  • Anderson, D.I., Kobayashi, Y., Hamel, K., Rivera, M., Campos, J.J., & Barbu-Roth, M. (2016). Effects of support surface and optic flow on step-like movements in pre-crawling and crawling infants. Infant Behavior and Development, 42, 104110. PubMed doi:10.1016/j.infbeh.2015.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angulo-Kinzler, R., Ulrich, B.D., & Thelen, E. (2002). Three-month-old infants can select specific leg motor solutions. Motor Control, 6(1), 5268. PubMed doi:10.1123/mcj.6.1.52

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayley, N. (1936). The development of motor abilities during the first three years. Monographs of the Society for Research in Child Development, 1(1), 126. doi:10.2307/1165480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.L., Kubo, M., Buzzi, U., & Ulrich, B. (2006). Early changes in muscle activation patterns of toddlers during walking. Infant Behavior & Development, 29(2), 175188. PubMed doi:10.1016/j.infbeh.2005.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.L., Kubo, M., & Ulrich, B.D. (2009). Emergence of neuromuscular patterns during walking in toddlers with typical development and with Down syndrome. Human Movement Science, 28(2), 283296. PubMed doi:10.1016/j.humov.2008.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbetta, D., Friedman, D.R., & Bell, M.A. (2014). Brain reorganization as a function of walking experience in 12-month-old infants: Implications for the development of manual laterality. Frontiers in Psychology, 5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Haan, M. (2002). Introduction to infant EEG and event-related potentials. In M. de Haan (Ed.), Infant EEG and event-related potentials (pp. 3976). New York, NY: Psychology Press.

    • Search Google Scholar
    • Export Citation
  • de Vries, J.I.P., & Fong, B.F. (2006). Normal fetal motility: An overview. Ultrasound in Obstetrics & Gynecology, 27(6), 701711. PubMed doi:10.1002/uog.2740

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edelman, G.M. (1993). Neural Darwinism: Selection and reentrant signaling in higher brain function. Neuron, 10(2), 115125. PubMed doi:10.1016/0896-6273(93)90304-A

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galloway, J.C., & Thelen, E. (2004). Feet first: Object exploration in young infants. Infant Behavior and Development, 27(1), 107112. doi

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldfield, E.C. (1989). Transition from rocking to crawling: Postural constraints on infant movement. Developmental Psychology, 25(6), 913919. doi:10.1037/0012-1649.25.6.913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, S.L., Reeb-Sutherland, B.C., & Nelson, E.L. (2016). Quantifying motor experience in the infant brain: EEG power, coherence, and mu desynchronization. Frontiers in Psychology, 7, 216. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halsband, U., & Lange, R.K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology Paris, 99(4-6), 414424. doi:10.1016/j.jphysparis.2006.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haydar, T.F., & Reeves, R.H. (2012). Trisomy 21 and early brain development. Trends in Neuroscience, 35(2), 8191. doi:10.1016/j.tins.2011.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imai, M., Watanabe, H., Yasui, K., Kimura, Y., Shitara, Y., Tsuchida, S., … Taga, G. (2014). Functional connectivity of the cortex of term and preterm infants and infants with Down’s syndrome. Neuroimage, 85, 272278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knickmeyer, R.C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J.K., … Gilmore, J.H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28(47), 1217612182. PubMed doi:10.1523/JNEUROSCI.3479-08.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurjak, A., Carrera, J.M., Medic, M., Azumendi, G., Andonotopo, W., & Stanojevic, M. (2005). The antenatal development of fetal behavioral patterns assessed by four dimensional sonography. Journal of Maternal-Fetal & Neonatal Medicine, 17(6), 401416. PubMed doi:10.1080/14767050400029657

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurz, M.J., Wilson, T.W., & Arpin, D.J. (2012). Stride-time variability and sensorimotor cortical activation during walking. Neuroimage, 59(2), 16021607. PubMed doi:10.1016/j.neuroimage.2011.08.084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurz, M.J., Wilson, T.W., & Arpin, D.J. (2014). An fNIRS exploratory investigation of the cortical activity during gait in children with spastic diplegic cerebral palsy. Brain Development, 36(10), 870877. PubMed doi:10.1016/j.braindev.2014.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobo, M.A., Galloway, J.C., & Savelsbergh, G.J. (2004). General and task-related experiences affect early object interaction. Child Development, 75(4), 12681281. PubMed doi:10.1111/j.1467-8624.2004.00738.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubec, G., & Engidawork, E. (2002). The brain in Down syndrome (TRISOMY 21). Journal of Neurology, 249(10), 13471356. PubMed doi:10.1007/s00415-002-0799-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGraw, M. (1963). The neuromuscular maturation of the human infant. New York, NY: Hafner Publishing Company, Inc.

  • Merendonk, E.J., Brouwers, J.J., De Catte, L., Hasaerts, D., Nijhuis-van der Sanden, M.W., & Kerckhofs, E. (2017). Identification of prenatal behavioral patterns of the gross motor movements within the early stages of fetal development. Infant and Child Development,  26(5), 115.

    • Search Google Scholar
    • Export Citation
  • Neuper, C., Wortz, M., & Pfurtscheller, G. (2006). ERD/ERS patterns reflectingsensorimotor activation and deactivation. Progress in Brain Research, 159, 211222. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishiyori, R., Baur, K., Harris, M., Meehan, S.K., & Ulrich, B.D. (n.d.). Emergence of cortical network activity as infants develop functional motor skills. Manuscript in preparation.

    • Search Google Scholar
    • Export Citation
  • Nishiyori, R., Bisconti, S., Meehan, S.K., & Ulrich, B.D. (2016). Developmental changes in motor cortex activity as infants develop functional motor skills. Developmental Psychobiology, 58(6), 773783. PubMed doi:10.1002/dev.21418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishiyori, R., Bisconti, S., & Ulrich, B. (2016). Motor cortex activity during functional motor skills: An fNIRS study . Brain Topography, 29(1), 4255. PubMed doi:10.1007/s10548-015-0443-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pochon, J.B., Levy, R., Poline, J.B., Crozier, S., Lehéricy, S., Pillon, B., … Dubois, J. (2001). The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions an fMRI study. Cerebral Cortex, 11(3), 260266. PubMed doi:10.1093/cercor/11.3.260

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prechtl, H.F.R. (1990). Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Human Development, 23(3), 151158. PubMed doi:10.1016/0378-3782(90)90011-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purpura, D.P. (1974). Dendritic spine“ dysgenesis” and mental retardation. Science 186(4169), 11261128. PubMed doi:10.1126/science.186.4169.1126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reissland, N., Francis, B., Aydin, E., Mason, J., & Schaal, B. (2013). The development of anticipation in the fetus: A longitudinal account of human fetal mouth movements in reaction to and anticipation of touch. Developmental Psychobiology, 56(5), 955963. PubMed doi:10.1002/dev.21172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rovee, C.K., & Rovee, D.T. (1969). Conjugate reinforcement of infant exploratory behavior. Journal of Experimental Child Psychology, 8(1), 3339. PubMed doi:10.1016/0022-0965(69)90025-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sporns, O., & Edelman, G.M. (1993). Solving Bernstein’s problem: A proposal for the development of coordinated movement by selection. Child Development, 64(4), 960981. PubMed doi:10.2307/1131321

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thelen, E., & Ulrich, B.D. (1991). Hidden skills: A dynamic systems analysis of treadmill stepping during the first year. Monographs of the Society for Research in Child Development, 56(1, Serial No. 223), 198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., Delgado, M.R., Dhamne, S.C., Khan, B., Alexandrakis, G., Romero, M.I., … Liu, H. (2010). Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy. Optics Express, 18(25), 2597325986. PubMed doi:10.1364/OE.18.025973

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Meer, A. (1997). Keeping the arm in the limelight: Advanced visual control of arm movements in neonates. European Journal of Paediatric Neurology, 1(4), 103108. doi:10.1016/S1090-3798(97)80040-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Meer, A., van der Weel, F., & Lee, D. (1996). Lifting weights in neonates: Developing visual control of reaching. Scandinavian Journal of Psychology, 37(4), 424436. PubMed doi:10.1111/j.1467-9450.1996.tb00674.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanderwert, R.E., & Nelson, C.A. (2014). The use of near-infrared spectroscopy in the study of typical and atypical development. Neuroimage, 85(Pt 1), 264271. doi:10.1016/j.neuroimage.2013.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, H., Homae, F., & Taga, G. (2010). General to specific development of functional activation in the cerebral cortexes of 2- to 3-month-old infants. Neuroimage, 50(4), 15361544. PubMed doi:10.1016/j.neuroimage.2010.01.068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J.L., Corbetta, D., & Guan, Y. (2015). Learning to reach with “sticky” or “non-sticky” mittens: A tale of developmental trajectories. Infant Behavior & Development, 38, 8296. PubMed doi:10.1016/j.infbeh.2015.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wisniewski, K.E. (1990). Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. American Journal of Medical Genetics Part A, 37(S7), 274281. doi:10.1002/ajmg.1320370755

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, R., Qi, X., Patino, A., Fagg, A.H., Kolobe, T.H., Miller, D.P., & Ding, L. (2016). Characterization of infant mu rhythm immediately before crawling: A high-resolution EEG study. Neuroimage, 146, 4757. PubMed doi:10.1016/j.neuroimage.2016.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2247 930 12
Full Text Views 11 4 0
PDF Downloads 11 6 0