Fractal Dynamics, Variability, and Coordination in Human Locomotion

in Kinesiology Review
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $41.00

1 year subscription

USD $54.00

Student 2 year subscription

USD $77.00

2 year subscription

USD $101.00

In human locomotion, the magnitude of gait variability is a strong predictor of fall risk and frailty due to aging and disease. Beyond variability magnitude, the past two decades have provided emerging alternative methodologies for studying biological variability. Specifically, coordination variability has been found to be critically important within a healthy, adaptive system. While many activities aim to minimize end-point variability, greater coordination variability indicates a more flexible system, and is greater in experts compared to novices, or healthy compared to diseased individuals. Finally, variability structure (i.e., fractal dynamics) may describe the overall adaptive capacity of the locomotor system. We provide empirical support that fractal dynamics are associated with step length symmetry during challenging split-belt treadmill walking. Individuals whose fractal scaling approached 1/f fractal scaling during constrained walking also exhibited the best gait adaptability performance. Importantly, this relation between fractality and gait adaptability was not observed in unperturbed preferred speed walking.

Ducharme and van Emmerik are with the Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA.

Address author correspondence to Richard E.A. van Emmerik at rvanemmerik@kin.umass.edu.
Kinesiology Review
Article Sections
References
  • BalasubramanianC.K.ClarkD.J. & FoxE.J. (2014). Walking adaptability after a stroke and its assessment in clinical settings. Stroke Research and Treatment 2014121. doi:10.1155/2014/591013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BartlettR.WheatJ. & RobinsM. (2007). Is movement variability important for sports biomechanists? Sports Biomechanics 6224243. doi:10.1080/14763140701322994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BassingthwaighteJ.B. & van BeekJ.H.G.M. (1988). Lightning and the heart: Fractal behavior in cardiac function. Proceedings of the IEEE 76693699. doi:10.1109/5.4458

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BernsteinN.A. (1967). The co-ordination and regulation of movements. Oxford UK: Pergamon Press, Ltd.

  • BrachJ.S.BerlinJ.E.VanSwearingenJ.M.NewmanA.B. & StudenskiS.A. (2005). Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. Journal of Neuroengineering and Rehabilitation 22128. doi:10.1186/1743-0003-2-21

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BruijnS.M.Van ImpeA.DuysensJ. & SwinnenS.P. (2012). Split-belt walking: Adaptation differences between young and older adults. Journal of Neurophysiology 10811491157. doi:10.1152/jn.00018.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DamourasS.ChangM.D.SejdicE. & ChauT. (2010). An empirical examination of detrended fluctuation analysis for gait data. Gait & Posture 31336340. PubMed doi:10.1016/j.gaitpost.2009.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DavidsK.GlazierP.S.AraujoD. & BartlettR.M. (2003). Movement systems as dynamical systems: The role of functional variability and its implications for sports medicine. Sports Medicine 33245260. PubMed doi:10.2165/00007256-200333040-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelignieresD. & MarmelatV. (2012). Fractal fluctuations and complexity: Current debates and future challenges. Critical Reviews in Biomedical Engineering 40485500. doi:10.1615/CritRevBiomedEng.2013006727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelignieresD.RamdaniS.LemoineL.TorreK.FortesM. & NinotG. (2006). Fractal analyses for ‘short’ time series: A re-assessment of classical methods. Journal of Mathematical Psychology 50525544. doi:10.1016/j.jmp.2006.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DucharmeS.W. (2017). Quantifying gait adaptability: Fractality complexity and stability during asymmetric walking (Doctoral dissertation). University of MassachusettsAmherst.

    • Search Google Scholar
    • Export Citation
  • HamillJ.Van EmmerikR.E.A.HeiderscheitB.C. & LiL. (1999). A dynamical systems approach to lower extremity running injury. Clinical Biomechanics 14297308. PubMed doi:10.1016/S0268-0033(98)90092-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HausdorffJ.M. (2007). Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Human Movement Science 26555589. PubMed doi:10.1016/j.humov.2007.05.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HausdorffJ.M.MitchellS.L.FirtionR.PengC.K.CudkowiczM.E.WeiJ.Y. & GoldbergerA.L. (1997). Altered fractal dynamics of gait: Reduced stride-interval correlations with aging and Huntington's disease. Journal of Applied Physiology 82262269. PubMed doi:10.1152/jappl.1997.82.1.262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HausdorffJ.M.PengC.K.LadinZ.WeiJ.Y. & GoldbergerA.L. (1995). Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. Journal of Applied Physiology 78349358. PubMed doi:10.1152/jappl.1995.78.1.349

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HausdorffJ.M.PengC.K.WeiJ.Y. & GoldbergerA.L. (2000). Fractal analysis of human walking rhythm. In J.M. Winters & P.E. Crago (Eds.) Biomechanics and neural control of posture and movement (1st ed. pp. 253264). New York, NY: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HausdorffJ.M.PurdonP.L.PengC.K.LadinZ.WeiJ.Y. & GoldbergerA.L. (1996). Fractal dynamics of human gait: Stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology 8014481457. doi:10.1152/jappl.1996.80.5.1448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeiderscheitB.C.HamillJ. & Van EmmerikR.E.A. (2002). Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. Journal of Applied Biomechanics 18110121. doi:10.1123/jab.18.2.110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JordanK.ChallisJ.H. & NewellK.M. (2007a). Speed influences on the scaling behavior of gait cycle fluctuations during treadmill running. Human Movement Science 2687102. doi:10.1016/j.humov.2006.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JordanK.ChallisJ.H. & NewellK.M. (2007b). Walking speed influences on gait cycle variability. Gait & Posture 26128134. doi:10.1016/j.gaitpost.2006.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KangH.G. & DingwellJ.B. (2008). Separating the effects of age and walking speed on gait variability. Gait & Posture 27572577. PubMed doi:10.1016/j.gaitpost.2007.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research 21715. PubMed doi:10.1007/s00221-012-3000-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L.SholzJ.P. & SchönerG. (2002). Motor control strategies revealed in the structure of motor variability. Exercise and Sport Sciences Reviews 302631. PubMed doi:10.1097/00003677-200201000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiebovitchL.S. (1998). Fractals and chaos simplified for the life sciences. Oxford, UK: Oxford University Press.

  • LiebovitchL.S. & ShehadehL.A. (2005). Introduction to fractals. In M.A. Riley & G. Van Orden(Eds.) Tutorials in contemporary nonlinear methods for the behavioral sciences Web book. Fairfax, VA: National Science Foundation.

    • Search Google Scholar
    • Export Citation
  • LipsitzL.A. (2002). Dynamics of stability: The physiologic basis of functional health and frailty. Journals of Gerontology Series A-Biological Sciences and Medical Sciences 57115125. PubMed doi:10.1093/gerona/57.3.B115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LipsitzL.A. & GoldbergerA.L. (1992). Loss of ‘complexity’ and aging. Journal of the American Medical Association 26718061809. PubMed doi:10.1001/jama.1992.03480130122036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MakiB.E. (1997). Gait changes in older adults: Predictors of falls or indicators of fear. Journal of the American Geriatrics Society 45313320. PubMed doi:10.1111/j.1532-5415.1997.tb00946.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MandelbrotB.B. (1977). The fractal geometry of nature. New York, NY: W. H. Freeman and Company.

  • MarmelatV.TorreK.BeekP.J. & DaffertshoferA. (2014). Persistent fluctuations in stride intervals under fractal auditory stimulation. PLoS ONE 9e91949. PubMed doi:10.1371/journal.pone.0091949

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MillerR.H.MeardonS.A.DerrickT.R. & GilletteJ.C. (2008). Continuous relative phase variability during an exhaustive run in runners with a history of illiotibial band syndrome. Journal of Applied Biomechanics 24262270. doi:10.1123/jab.24.3.262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NewellK.M. (1986). Constraints on the development of coordination. In M.G. Wade & H.T.A. Whiting (Eds.) Motor development in children: Aspects of coordination and control (pp. 341360). Dordrecht, The Netherlands: Martinus Nijhoff.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell K.M. & Corcos D.M. (Eds.). (1993). Variability and motor control. Champaign, IL: Human Kinetics Publishers.

  • NewellK.M. & VaillancourtD.E. (2001). Dimensional change in motor learning. Human Movement Science 20695715. PubMed doi:10.1016/S0167-9457(01)00073-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OwingsT.M. & GrabinerM.D. (2004a). Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. Journal of Biomechanics 37935938. doi:10.1016/j.jbiomech.2003.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OwingsT.M. & GrabinerM.D. (2004b). Variability of step kinematics in young and older adults. Gait & Posture 202629. doi:10.1016/S0966-6362(03)00088-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PalmerC.J.Van EmmerikR.E.A. & HamillJ. (2012). Ecological gait dynamics: Stability, variability and optimal design. Footwear Science 4167182. doi:10.1080/19424280.2012.666271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PengC.K.BuldyrevS.V.HavlinS.SimonsM.StanleyH.E. & GoldbergerA.L. (1994). Mosaic organization of DNA nucleotides. Physical Review E 4916851689. doi:10.1103/PhysRevE.49.1685

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PengC.K.HavlinS.StanleyH.E. & GoldbergerA.L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 58287. PubMed doi:10.1063/1.166141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PreotoniE.HamillJ.HarrisonA.J.Van EmmerikR.E.A.WilsonC. & RodanoR. (2013). Movement variability and skills monitoring in sports. Sports Biomechanics 126992. doi:10.1080/14763141.2012.738700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RheaC.K. & KieferA.W. (2014). Patterned variability in gait behavior: How can it be measured and what does it mean? In L. Li & M. Holmes (Eds.) Gait biometrics: Basic patterns role of neurological disorders and effects of physical activity (pp. 1743). Hauppauge, NY: Nova Science Pub, Inc.

    • Search Google Scholar
    • Export Citation
  • RheaC.K.KieferA.W.D'AndreaS.E.WarrenW.H. & AaronR.K. (2014). Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics. Human Movement Science 362034. PubMed doi:10.1016/j.humov.2014.04.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SapovalB.GobronT. & MargolinaA. (1991). Vibrations of fractal drums. Physical Review Letters 6729742977. PubMed doi:10.1103/PhysRevLett.67.2974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ScholzJ.P. & SchönerG. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research 126289306. PubMed doi:10.1007/s002210050738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchroederM.R. (1991). Fractals chaos power laws: Minutes from an infinite paradise. New York, NY: W. H. Freeman and Company.

  • SeayJ.F.Van EmmerikR.E. & HamillJ. (2011). Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clinical Biomechanics 26572578. doi:10.1016/j.clinbiomech.2010.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeelyA.J. & MacklemP. (2012). Fractal variability: An emergent property of complex dissipative systems. Chaos 22013108. doi:10.1063/1.3675622

  • StergiouN. & DeckerL.M. (2011). Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Human Movement Science 30869888. PubMed doi:10.1016/j.humov.2011.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StergiouN.HarbourneR.T. & CavanaughJ.T. (2006). Optimal movement variability: A new theoretical perspective for neurological physical therapy. Journal of Neurologic Physical Therapy 30120129. doi:10.1097/01.NPT.0000281949.48193.d9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TerrierP. & DeriazO. (2011). Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. Journal of Neuroengineering and Rehabilitation 8113. doi:10.1186/1743-0003-8-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van EmmerikR.E.A.DucharmeS.W.AmadoA.C. & HamillJ. (2016). Comparing dynamical systems concepts and techniques for biomechanical analysis. Journal of Sport and Health Science 5313. doi:10.1016/j.jshs.2016.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van EmmerikR.E.A.WagenaarR.C.WinogrodzkaA. & WoltersE.C. (1999). Identification of axial rigidity during locomotion in Parkinson disease. Archives of Physical Medicine and Rehabilitation 80186191. PubMed doi:10.1016/S0003-9993(99)90119-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van OrdenG.C.HoldenJ.G. & TurveyM.T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General 132331350. doi:10.1037/0096-3445.132.3.331

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VergheseJ.HoltzerR.LiptonR.B. & WangC. (2009). Quantitative gait markers and incident fall risk in older adults. The Journals of Gerontology. Series A Biological Sciences and Medical Sciences 64896901. PubMed doi:10.1093/gerona/glp033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von HolstE. (1939/1973). The behavioral physiology of animals and man: Selected papers of E. Von Holst (Vol. 1). Coral Gables, FL: University of Miami Press.

    • Search Google Scholar
    • Export Citation
  • WagenaarR.C. & Van EmmerikR.E.A. (1994). Dynamics of pathological gait. Human Movement Science 13441471. doi:10.1016/0167-9457(94)90049-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WestB.J. & ShlesingerM. (1990). The noise in natural phenomena. American Scientist 784045.

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 83 83 33
Full Text Views 3 3 3
PDF Downloads 3 3 3
Altmetric Badge
PubMed
Google Scholar
Cited By