Fractal Dynamics, Variability, and Coordination in Human Locomotion

in Kinesiology Review
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $41.00

1 year subscription

USD  $54.00

Student 2 year subscription

USD  $77.00

2 year subscription

USD  $101.00

In human locomotion, the magnitude of gait variability is a strong predictor of fall risk and frailty due to aging and disease. Beyond variability magnitude, the past two decades have provided emerging alternative methodologies for studying biological variability. Specifically, coordination variability has been found to be critically important within a healthy, adaptive system. While many activities aim to minimize end-point variability, greater coordination variability indicates a more flexible system, and is greater in experts compared to novices, or healthy compared to diseased individuals. Finally, variability structure (i.e., fractal dynamics) may describe the overall adaptive capacity of the locomotor system. We provide empirical support that fractal dynamics are associated with step length symmetry during challenging split-belt treadmill walking. Individuals whose fractal scaling approached 1/f fractal scaling during constrained walking also exhibited the best gait adaptability performance. Importantly, this relation between fractality and gait adaptability was not observed in unperturbed preferred speed walking.

Ducharme and van Emmerik are with the Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA.

Address author correspondence to Richard E.A. van Emmerik at rvanemmerik@kin.umass.edu.
  • Balasubramanian, C.K., Clark, D.J., & Fox, E.J. (2014). Walking adaptability after a stroke and its assessment in clinical settings. Stroke Research and Treatment, 2014, 1–21. doi:10.1155/2014/591013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists? Sports Biomechanics, 6, 224–243. doi:10.1080/14763140701322994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassingthwaighte, J.B., & van Beek, J.H.G.M. (1988). Lightning and the heart: Fractal behavior in cardiac function. Proceedings of the IEEE, 76, 693–699. doi:10.1109/5.4458

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1967). The co-ordination and regulation of movements. Oxford, UK: Pergamon Press, Ltd.

  • Brach, J.S., Berlin, J.E., VanSwearingen, J.M., Newman, A.B., & Studenski, S.A. (2005). Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. Journal of Neuroengineering and Rehabilitation, 2, 21–28. doi:10.1186/1743-0003-2-21

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruijn, S.M., Van Impe, A., Duysens, J., & Swinnen, S.P. (2012). Split-belt walking: Adaptation differences between young and older adults. Journal of Neurophysiology, 108, 1149–1157. doi:10.1152/jn.00018.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damouras, S., Chang, M.D., Sejdic, E., & Chau, T. (2010). An empirical examination of detrended fluctuation analysis for gait data. Gait & Posture, 31, 336–340. PubMed doi:10.1016/j.gaitpost.2009.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davids, K., Glazier, P.S., Araujo, D., & Bartlett, R.M. (2003). Movement systems as dynamical systems: The role of functional variability and its implications for sports medicine. Sports Medicine, 33, 245–260. PubMed doi:10.2165/00007256-200333040-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delignieres, D., & Marmelat, V. (2012). Fractal fluctuations and complexity: Current debates and future challenges. Critical Reviews in Biomedical Engineering, 40, 485–500. doi:10.1615/CritRevBiomedEng.2013006727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delignieres, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., & Ninot, G. (2006). Fractal analyses for ‘short’ time series: A re-assessment of classical methods. Journal of Mathematical Psychology, 50, 525–544. doi:10.1016/j.jmp.2006.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharme, S.W. (2017). Quantifying gait adaptability: Fractality, complexity, and stability during asymmetric walking (Doctoral dissertation). University of Massachusetts, Amherst.

    • Search Google Scholar
    • Export Citation
  • Hamill, J., Van Emmerik, R.E.A., Heiderscheit, B.C., & Li, L. (1999). A dynamical systems approach to lower extremity running injury. Clinical Biomechanics, 14, 297–308. PubMed doi:10.1016/S0268-0033(98)90092-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausdorff, J.M. (2007). Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Human Movement Science, 26, 555–589. PubMed doi:10.1016/j.humov.2007.05.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausdorff, J.M., Mitchell, S.L., Firtion, R., Peng, C.K., Cudkowicz, M.E., Wei, J.Y., & Goldberger, A.L. (1997). Altered fractal dynamics of gait: Reduced stride-interval correlations with aging and Huntington's disease. Journal of Applied Physiology, 82, 262–269. PubMed doi:10.1152/jappl.1997.82.1.262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausdorff, J.M., Peng, C.K., Ladin, Z., Wei, J.Y., & Goldberger, A.L. (1995). Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. Journal of Applied Physiology, 78, 349–358. PubMed doi:10.1152/jappl.1995.78.1.349

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausdorff, J.M., Peng, C.K., Wei, J.Y., & Goldberger, A.L. (2000). Fractal analysis of human walking rhythm. In J.M. Winters, & P.E. Crago (Eds.), Biomechanics and neural control of posture and movement (1st ed., pp. 253–264). New York, NY: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausdorff, J.M., Purdon, P.L., Peng, C.K., Ladin, Z., Wei, J.Y., & Goldberger, A.L. (1996). Fractal dynamics of human gait: Stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology, 80, 1448–1457. doi:10.1152/jappl.1996.80.5.1448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heiderscheit, B.C., Hamill, J., & Van Emmerik, R.E.A. (2002). Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. Journal of Applied Biomechanics, 18, 110–121. doi:10.1123/jab.18.2.110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, K., Challis, J.H., & Newell, K.M. (2007a). Speed influences on the scaling behavior of gait cycle fluctuations during treadmill running. Human Movement Science, 26, 87–102. doi:10.1016/j.humov.2006.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, K., Challis, J.H., & Newell, K.M. (2007b). Walking speed influences on gait cycle variability. Gait & Posture, 26, 128–134. doi:10.1016/j.gaitpost.2006.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, H.G., & Dingwell, J.B. (2008). Separating the effects of age and walking speed on gait variability. Gait & Posture, 27, 572–577. PubMed doi:10.1016/j.gaitpost.2007.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217, 1–5. PubMed doi:10.1007/s00221-012-3000-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Sholz, J.P., & Schöner, G. (2002). Motor control strategies revealed in the structure of motor variability. Exercise and Sport Sciences Reviews, 30, 26–31. PubMed doi:10.1097/00003677-200201000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebovitch, L.S. (1998). Fractals and chaos simplified for the life sciences. Oxford, UK: Oxford University Press.

  • Liebovitch, L.S., & Shehadeh, L.A. (2005). Introduction to fractals. In M.A. Riley, & G. Van Orden(Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences Web book. Fairfax, VA: National Science Foundation.

    • Search Google Scholar
    • Export Citation
  • Lipsitz, L.A. (2002). Dynamics of stability: The physiologic basis of functional health and frailty. Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 57, 115–125. PubMed doi:10.1093/gerona/57.3.B115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipsitz, L.A., & Goldberger, A.L. (1992). Loss of ‘complexity’ and aging. Journal of the American Medical Association, 267, 1806–1809. PubMed doi:10.1001/jama.1992.03480130122036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maki, B.E. (1997). Gait changes in older adults: Predictors of falls or indicators of fear. Journal of the American Geriatrics Society, 45, 313–320. PubMed doi:10.1111/j.1532-5415.1997.tb00946.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B.B. (1977). The fractal geometry of nature. New York, NY: W. H. Freeman and Company.

  • Marmelat, V., Torre, K., Beek, P.J., & Daffertshofer, A. (2014). Persistent fluctuations in stride intervals under fractal auditory stimulation. PLoS ONE, 9, e91949. PubMed doi:10.1371/journal.pone.0091949

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R.H., Meardon, S.A., Derrick, T.R., & Gillette, J.C. (2008). Continuous relative phase variability during an exhaustive run in runners with a history of illiotibial band syndrome. Journal of Applied Biomechanics, 24, 262–270. doi:10.1123/jab.24.3.262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M. (1986). Constraints on the development of coordination. In M.G. Wade, & H.T.A. Whiting (Eds.), Motor development in children: Aspects of coordination and control (pp. 341–360). Dordrecht, The Netherlands: Martinus Nijhoff.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., & Corcos, D.M. (Eds.). (1993). Variability and motor control. Champaign, IL: Human Kinetics Publishers.

  • Newell, K.M., & Vaillancourt, D.E. (2001). Dimensional change in motor learning. Human Movement Science, 20, 695–715. PubMed doi:10.1016/S0167-9457(01)00073-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owings, T.M., & Grabiner, M.D. (2004a). Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. Journal of Biomechanics, 37, 935–938. doi:10.1016/j.jbiomech.2003.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owings, T.M., & Grabiner, M.D. (2004b). Variability of step kinematics in young and older adults. Gait & Posture, 20, 26–29. doi:10.1016/S0966-6362(03)00088-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, C.J., Van Emmerik, R.E.A., & Hamill, J. (2012). Ecological gait dynamics: Stability, variability and optimal design. Footwear Science, 4, 167–182. doi:10.1080/19424280.2012.666271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., & Goldberger, A.L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49, 1685–1689. doi:10.1103/PhysRevE.49.1685

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C.K., Havlin, S., Stanley, H.E., & Goldberger, A.L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5, 82–87. PubMed doi:10.1063/1.166141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preotoni, E., Hamill, J., Harrison, A.J., Van Emmerik, R.E.A., Wilson, C., & Rodano, R. (2013). Movement variability and skills monitoring in sports. Sports Biomechanics, 12, 69–92. doi:10.1080/14763141.2012.738700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhea, C.K., & Kiefer, A.W. (2014). Patterned variability in gait behavior: How can it be measured and what does it mean? In L. Li, & M. Holmes (Eds.), Gait biometrics: Basic patterns, role of neurological disorders and effects of physical activity (pp. 17–43). Hauppauge, NY: Nova Science Pub, Inc.

    • Search Google Scholar
    • Export Citation
  • Rhea, C.K., Kiefer, A.W., D'Andrea, S.E., Warren, W.H., & Aaron, R.K. (2014). Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics. Human Movement Science, 36, 20–34. PubMed doi:10.1016/j.humov.2014.04.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapoval, B., Gobron, T., & Margolina, A. (1991). Vibrations of fractal drums. Physical Review Letters, 67, 2974–2977. PubMed doi:10.1103/PhysRevLett.67.2974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126, 289–306. PubMed doi:10.1007/s002210050738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, M.R. (1991). Fractals, chaos, power laws: Minutes from an infinite paradise. New York, NY: W. H. Freeman and Company.

  • Seay, J.F., Van Emmerik, R.E., & Hamill, J. (2011). Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clinical Biomechanics, 26, 572–578. doi:10.1016/j.clinbiomech.2010.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seely, A.J., & Macklem, P. (2012). Fractal variability: An emergent property of complex dissipative systems. Chaos, 22, 013108. doi:10.1063/1.3675622

  • Stergiou, N., & Decker, L.M. (2011). Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Human Movement Science, 30, 869–888. PubMed doi:10.1016/j.humov.2011.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stergiou, N., Harbourne, R.T., & Cavanaugh, J.T. (2006). Optimal movement variability: A new theoretical perspective for neurological physical therapy. Journal of Neurologic Physical Therapy, 30, 120–129. doi:10.1097/01.NPT.0000281949.48193.d9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terrier, P., & Deriaz, O. (2011). Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. Journal of Neuroengineering and Rehabilitation, 8, 1–13. doi:10.1186/1743-0003-8-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Emmerik, R.E.A., Ducharme, S.W., Amado, A.C., & Hamill, J. (2016). Comparing dynamical systems concepts and techniques for biomechanical analysis. Journal of Sport and Health Science, 5, 3–13. doi:10.1016/j.jshs.2016.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Emmerik, R.E.A., Wagenaar, R.C., Winogrodzka, A., & Wolters, E.C. (1999). Identification of axial rigidity during locomotion in Parkinson disease. Archives of Physical Medicine and Rehabilitation, 80, 186–191. PubMed doi:10.1016/S0003-9993(99)90119-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Orden, G.C., Holden, J.G., & Turvey, M.T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132, 331–350. doi:10.1037/0096-3445.132.3.331

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verghese, J., Holtzer, R., Lipton, R.B., & Wang, C. (2009). Quantitative gait markers and incident fall risk in older adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64, 896–901. PubMed doi:10.1093/gerona/glp033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Holst, E. (1939/1973). The behavioral physiology of animals and man: Selected papers of E. Von Holst (Vol. 1). Coral Gables, FL: University of Miami Press.

    • Search Google Scholar
    • Export Citation
  • Wagenaar, R.C., & Van Emmerik, R.E.A. (1994). Dynamics of pathological gait. Human Movement Science, 13, 441–471. doi:10.1016/0167-9457(94)90049-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, B.J., & Shlesinger, M. (1990). The noise in natural phenomena. American Scientist, 78, 40–45.

All Time Past Year Past 30 Days
Abstract Views 92 92 14
Full Text Views 3 3 1
PDF Downloads 3 3 1