The Past and Future of Clock-Like Timing in Motor Performance

in Kinesiology Review
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $41.00

1 year subscription

USD $54.00

Student 2 year subscription

USD $77.00

2 year subscription

USD $101.00

Over the past 18 years, Zelaznik and colleagues have promoted what is known as the event-emergent timing distinction. According to this framework, control of timing can be based upon a neurological clock-like process or upon an emergent process. I review the highlights of this research program that supports this distinction, then describe a new line of research that examines whether timing is a goal of the task or a consequence of other movement constraints. These results highlight the importance of goals in the control of timing.

Zelaznik is with the Department of Health and Kinesiology, Purdue University, West Lafayette, IN.

Address author correspondence to Howard N. Zelaznik at hnzelaz@purdue.edu.
Kinesiology Review
Article Sections
References
  • BillonM.SemjenA. & StelmachG.E. (1996). The timing effects of accent production in periodic finger-tapping sequences. Journal of Motor Behavior 28(3) 198210. PubMed doi:10.1080/00222895.1996.9941745

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FittsP.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47381391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GentileA.M. (1972). A working model of skill acquisition with application to teaching. Quest 17323. doi:10.1080/00336297.1972.10519717

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GentnerD.R. (1987). Timing of skilled motor performance: Tests of the proportional duration model. Psychological Review 94255276. doi:10.1037/0033-295X.94.2.255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GibbonJ. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review 84279325. doi:10.1037/0033-295X.84.3.279

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GibbonJ. & ChurchR.M. (1990). Representation of time. Cognition 37(1–2) 2354. doi:10.1016/0010-0277(90)90017-E

  • GrafP. & SchacterD.L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology-Learning Memory and Cognition 11(3) 501518. doi:10.1037/0278-7393.11.3.501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoganN. & SternadD. (2007). On rhythmic and discrete movements: Reflections, definitions and implications for motor control. Experimental Brain Research 181(1) 1330. PubMed doi:10.1007/s00221-007-0899-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IvryR.B. & HazeltineR.E. (1995). Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. Journal of Experimental Psychology: Human Perception and Performance 21318.

    • Search Google Scholar
    • Export Citation
  • IvryR.B.KeeleS.W. & DienerH.C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research 73167180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IvryR.SpencerR.M.ZelaznikH.N. & DiedrichsenJ. (2002). The cerebellum and event timing. In S.M. Highstein & W.T. Thach (Eds.) The cerebellum: Recent developments in cerebellar research (Vol. 978 pp. 302317). New York, NY: New York Academy of Sciences.

    • Search Google Scholar
    • Export Citation
  • JantzenK.J.SteinbergF.L. & KelsoJ.A.S. (2004). Brain networks underlying human timing behavior are influenced by prior context. Proceedings of the National Academy of Science 101(17) 68156820. doi:10.1073/pnas.0401300101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKeemanJ.D. & ZelaznikH.N. (2018). Fitts’ law and the linear speed-accuracy trade-off: Evidence for separable speed-accuracy trade-offs. Manuscript in preparation.

    • Export Citation
  • MeyerD.E. & AbramsR.A.KornblumS.WrightC.E. & SmithJ.E.K. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review 95340370. PubMed doi:10.1037/0033-295X.95.3.340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MeyerD.E.SmithJ.E.K. & WrightC.E. (1982). Models for the speed and accuracy of aimed movements. Psychological Review 89449482. doi:10.1037/0033-295X.89.5.449

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReppB.H. (2000). Compensation for subliminal timing perturbations in perceptual-motor synchronization. Psychological Research-Psychologische Forschung 63(2) 106128. doi:10.1007/PL00008170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RobertsonS.ZelaznikH.LanteroD.GadaczK.SpencerR.DoffinJ. & SchneidtT. (1999). Correlations for timing consistency among tapping and drawing tasks: Evidence against a single timing process for motor control. Journal of Experimental Psychology: Human Perception and Performance 2513161330. PubMed

    • Search Google Scholar
    • Export Citation
  • SchmidtR.A. (1975). A schema theory of discrete motor skill learning. Psychological Review 82225260. doi:10.1037/h0076770

  • SchmidtR.A.ZelaznikH.HawkinsB.FrankJ.S. & QuinnJ.T. (1979). Motor-output variability—A theory for the accuracy of rapid motor acts. Psychological Review 86(5) 415451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SpencerR.M.C. & ZelaznikH.N. (2003). Weber (slope) analyses of timing variability in tapping and drawing tasks. Journal of Motor Behavior 35(4) 371381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SpencerR.M.C.ZelaznikH.N.DiedrichsenJ. & IvryR.B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300(5624) 14371439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StudenkaB.E. & ZelaznikH.N. (2011a). Synchronization in repetitive smooth movement requires perceptible events. Acta Psychologica 136(3) 432441. doi:10.1016/j.actpsy.2011.01.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StudenkaB.E. & ZelaznikH.N. (2011b). Circle drawing does not exhibit auditory-motor synchronization. Journal of Motor Behavior 43(3) 185191. doi:10.1080/00222895.2011.555796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TeulingsH.L.ContrerasvidalJ.L.StelmachG.E. & AdlerC.H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology 146(1) 159170. PubMed doi:10.1006/exnr.1997.6507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TurveyM.T. (1977). Preliminaries to a theory of action with reference to vision. In R.E. Shaw & J. Bransford (Eds.) Perceiving acting and knowing (pp. 211265). Hillsdale, NJ: Lawrence Erlbaum.

    • Search Google Scholar
    • Export Citation
  • WingA.M. & KristoffersonA.B. (1973). The timing of interresponse intervals. Perception & Psychophysics 13455460.

  • WulfG.HossM. & PrinzW. (1998). Instructions for motor learning: Differential effects of internal versus external focus of attention. Journal of Motor Behavior 30(2) 169179. doi:10.1080/00222899809601334

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZelaznikH.N. & RosenbaumD.A. (2010). Timing processes are correlated when tasks share a salient event. Journal of Experimental Psychology: Human Perception and Performance 36(6) 15651575.

    • Search Google Scholar
    • Export Citation
  • ZelaznikH.SpencerR.M.C. & IvryR.B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception and Performance 28575588.

    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 20 20 3
Full Text Views 2 2 2
PDF Downloads 1 1 1
Altmetric Badge
PubMed
Google Scholar