Concussion: A Window Into Brain–Movement Relations in Motor Control

in Kinesiology Review
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $41.00

1 year subscription

USD $54.00

Student 2 year subscription

USD $77.00

2 year subscription

USD $101.00

Research into sports-related concussion (SRC) or brain injury has vastly expanded our knowledge of the connection between brain activity and behavioral outcomes. Historical examination of concussion reveals components of structural changes in the brain resulting from injury. A constellation of clinical symptoms is typically present following concussion for several days and weeks. However, the intersection of structural changes and clinical examination still remains elusive to medical professionals. With emerging technologies and modalities such as quantitative electroencephalography (EEG), functional magnetic resonance imaging (fMRI), virtual reality (VR), and the study of movement, we can better understand the brain–behavior relationship on clinical findings post-injury. Our advancement in SRC study using athletics provides a unique window into the advances in our ability to study this public health crisis. SRC also allows us to understand how athletics and exercise influence brain health. The evolution of SRC diagnosis, treatment, and management informs our current abilities in the study of the brain.

Gay and Slobounov are with the Pennsylvania State University, University Park, PA.

Address author correspondence to Semyon Slobounov at sms18@psu.edu.
Kinesiology Review
Article Sections
References
  • AirdR.B.StraitL.S.ZealearD. & HrenoffM. (1952). Neurophysiological studies on cerebral concussion. Journal of Neurosurgery 9(4) 331347. PubMed doi:10.3171/jns.1952.9.4.0331

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AmenD.G.WuJ.C.TaylorD. & WilleumierK. (2011). Reversing brain damage in former NFL players: Implications for traumatic brain injury and substance abuse rehabilitation. Journal of Psychoactive Drugs 43(1) 15. PubMed doi:10.1080/02791072.2011.602282

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BarnesJ.N.TaylorJ.L.KluckB.N.JohnsonC.P. & JoynerM.J. (2013). Cerebrovascular reactivity is associated with maximal aerobic capacity in healthy older adults. Journal of Applied Physiology (Bethesda Md.: 1985) 114(10) 13831387. doi:10.1152/japplphysiol.01258.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BarthJ. & AlvesW. (1989). Mild head injury in sports: Neuropsychological sequelae and recovery of function. In: H.S. LevinH.M. Eisenberg & A.L. Benton (Eds.) Mild head injury (pp. 257276). New York, NY: Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • BeckerR.F.GroatR.A. & WindleW.F. (1946). Study of learning and memory in guinea pigs suffering brain concussion. Federation Proceedings 5(1) 7. PubMed

    • Search Google Scholar
    • Export Citation
  • BerchtoldN.C.ChinnG.ChouM.KesslakJ.P. & CotmanC.W. (2005). Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133(3) 853861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BernsteinD.M. (2002). Information processing difficulty long after self-reported concussion. Journal of the International Neuropsychological Society 8(5) 673682. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BuckleyT.A.MunkasyB.A.Tapia-LovlerT.G. & WikstromE.A. (2013). Altered gait termination strategies following a concussion. Gait & Posture 38(3) 549551. PubMed doi:10.1016/j.gaitpost.2013.02.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BuckleyT.A.OldhamJ.R.MunkasyB.A. & EvansK.M. (2017). Decreased anticipatory postural adjustments during gait initiation acutely postconcussion. Archives of Physical Medicine and Rehabilitation 98(10) 19621968. PubMed doi:10.1016/j.apmr.2017.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CaoC. & SlobounovS. (2010). Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(1) 1119. doi:10.1109/TNSRE.2009.2027704

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChenX.-P.TaoL.-Y. & ChenA.C.N. (2006). Electroencephalogram and evoked potential parameters examined in Chinese mild head injury patients for forensic medicine. Neuroscience Bulletin 22(3) 165170. PubMed

    • Search Google Scholar
    • Export Citation
  • ChirlesT.J.ReiterK.WeissL.R.AlfiniA.J.NielsonK.A. & SmithJ.C. (2017). Exercise training and functional connectivity changes in mild cognitive impairment and healthy elders. Journal of Alzheimer’s Disease 57(3) 845856. PubMed doi:10.3233/JAD-161151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ColdrenR.L.RussellM.L.ParishR.V.DretschM. & KellyM.P. (2012). The ANAM lacks utility as a diagnostic or screening tool for concussion more than 10 days following injury. Military Medicine 177(2) 179183. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De BeaumontL.MongeonD.TremblayS.MessierJ.PrinceF.LeclercS.ThéoretH. (2011). Persistent motor system abnormalities in formerly concussed athletes. Journal of Athletic Training 46(3) 234240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DettwilerA.MurugavelM.PutukianM.CubonV.FurtadoJ. & OshersonD. (2014). Persistent differences in patterns of brain activation after sports-related concussion: A longitudinal functional magnetic resonance imaging study. Journal of Neurotrauma 31(2) 180188. PubMed doi:10.1089/neu.2013.2983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DingY.-H.LiJ.ZhouY.RafolsJ.A.ClarkJ.C. & DingY. (2006). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research 3(1) 1523. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di PietroV.AmoriniA.M.TavazziB.HovdaD.A.SignorettiS.GizaC.C.BelliA. (2013). Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury. Molecular and Cellular Biochemistry 375(1–2) 185198. PubMed doi:10.1007/s11010-012-1541-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DohertyC.ZhaoL.RyanJ.KomabaY.InomataA. & CaulfieldB. (2017). Concussion is associated with altered preparatory postural adjustments during gait initiation. Human Movement Science 52160169. PubMed doi:10.1016/j.humov.2017.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FerrisL.T.WilliamsJ.S. & ShenC.-L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine & Science in Sports & Exercise 39(4) 728734. PubMed doi:10.1249/mss.0b013e31802f04c7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FordJ.H.GiovanelloK.S. & GuskiewiczK.M. (2013). Episodic memory in former professional football players with a history of concussion: An event-related functional neuroimaging study. Journal of Neurotrauma 30(20) 16831701. PubMed doi:10.1089/neu.2012.2535

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GizaC.C. & HovdaD.A. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training 36(3) 228235. PubMed

  • GosselinN.LassondeM.PetitD.LeclercS.MongrainV.CollieA. & MontplaisirJ. (2009). Sleep following sport-related concussions. Sleep Medicine 10(1) 3546. PubMed doi:10.1016/j.sleep.2007.11.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GosselinN.ThériaultM.LeclercS.MontplaisirJ. & LassondeM. (2006). Neurophysiological anomalies in symptomatic and asymptomatic concussed athletes. Neurosurgery 58(6) 11511161; discussion 1151-1161. PubMed doi:10.1227/01.NEU.0000215953.44097.FA

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaibachP.S.SlobounovS.M.SlobounovaE.S. & NewellK.M. (2007). Virtual time-to-contact of postural stability boundaries as a function of support surface compliance. Experimental Brain Research 177(4) 471482. PubMed doi:10.1007/s00221-006-0703-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HammekeT.A.McCreaM.CoatsS.M.VerberM.D.DurgerianS.FloraK.RaoS.M. (2013). Acute and subacute changes in neural activation during the recovery from sport-related concussion. Journal of the International Neuropsychological Society 19(8) 863872. PubMed doi:10.1017/S1355617713000702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HidesJ.A.Franettovich SmithM.M.MendisM.D.SmithN.A.CooperA.J.TreleavenJ.Low ChoyN.L. (2017). Musculoskeletal Science and Practice 29719. doi:10.1016/j.msksp.2017.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JaiswalN.RayW. & SlobounovS. (2010). Encoding of visual-spatial information in working memory requires more cerebral efforts than retrieval: Evidence from an EEG and virtual reality study. Brain Research 13478089. PubMed doi:10.1016/j.brainres.2010.05.086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KornA.GolanH.MelamedI.Pascual-MarquiR. & FriedmanA. (2005). Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome. Journal of Clinical Neurophysiology 22(1) 19. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeddyJ.J.KozlowskiK.DonnellyJ.P.PendergastD.R.EpsteinL.H. & WillerB. (2010). A preliminary study of subsymptom threshold exercise training for refractory post-concussion syndrome. Clinical Journal of Sport Medicine 20(1) 2127. PubMed doi:10.1097/JSM.0b013e3181c6c22c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LewisG.N.HumeP.A.StavricV.BrownS.R. & TaylorD. (2017). New Zealand rugby health study: Motor cortex excitability in retired elite and community level rugby players. The New Zealand Medical Journal 130(1448) 3444. PubMed

    • Search Google Scholar
    • Export Citation
  • LynnJ.G.LevineK.N. & Hewson. L.R. (1945). Psychologic tests for the clinical evaluation of late “diffuse organic” “neurotic” and “normal” reactions after closed head injury. Trauma of the Central Nervous System. Annals of Research in Nervous System and Mental Disorders Proceedings 4298378.

    • Search Google Scholar
    • Export Citation
  • MandlebergI.A. & BrooksD.N. (1975). Cognitive recovery after severe head injury. 1. Serial testing on the Wechsler Adult Intelligence Scale. Journal of Neurology Neurosurgery and Psychiatry 38(11) 11211126. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MassionJ. (1992). Movement, posture and equilibrium: Interaction and coordination. Progress in Neurobiology 38(1) 3556. PubMed

  • MayersL.B. & RedickT.S. (2012). Clinical utility of ImPACT assessment for postconcussion return-to-play counseling: Psychometric issues. Journal of Clinical and Experimental Neuropsychology 34(3) 235242. PubMed doi:10.1080/13803395.2011.630655

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCroryP.MeeuwisseW.DvorakJ.AubryM.BailesJ.BroglioS.VosP.E. (2017). Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine 51(11):838847. PubMed doi:10.1136/bjsports-2017-097699

    • Search Google Scholar
    • Export Citation
  • MeierT.B.BellgowanP.S.F.SinghR.KuplickiR.PolanskiD.W. & MayerA.R. (2015). Recovery of cerebral blood flow following sports-related concussion. JAMA Neurology 72(5) 530538. PubMed doi:10.1001/jamaneurol.2014.4778

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MooreR.D.HillmanC.H. & BroglioS.P. (2014). The persistent influence of concussive injuries on cognitive control and neuroelectric function. Journal of Athletic Training 49(1) 2435. PubMed doi:10.4085/1062-6050-49.1.01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MuniaT.T.K.GendreauJ.L.VermaA.K.JohnsonB.D.RomanickM.TavakolianK. & Fazel-RezaiR. (2016). Preliminary results of residual deficits observed in athletes with concussion history: Combined EEG and cognitive study. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 20164144. doi:10.1109/EMBC.2016.7590635

    • Search Google Scholar
    • Export Citation
  • NishijimaT.Torres-AlemanI. & SoyaH. (2016). Exercise and cerebrovascular plasticity. Progress in Brain Research 225243268. PubMed doi:10.1016/bs.pbr.2016.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ParkS.HorakF.B. & KuoA.D. (2004). Postural feedback responses scale with biomechanical constraints in human standing. Experimental Brain Research 154(4) 417427. PubMed doi:10.1007/s00221-003-1674-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ParkerT.M.OsternigL.R.Van DonkelaarP. & ChouL.-S. (2006). Gait stability following concussion. Medicine and Science in Sports and Exercise 38(6) 10321040. PubMed doi:10.1249/01.mss.0000222828.56982.a4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RasmussenP.BrassardP.AdserH.PedersenM.V.LeickL.HartE.PilegaardH. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology 94(10) 10621069. PubMed doi:10.1113/expphysiol.2009.048512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RueschJ. (1945). Intellectual impairment in head injuries. American Journal of Psychiatry 100480496.

  • SlobounovS.CaoC. & SebastianelliW. (2009). Differential effect of first versus second concussive episodes on wavelet information quality of EEG. Clinical Neurophysiology 120(5) 862867. PubMed doi:10.1016/j.clinph.2009.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SlobounovS.CaoC.SebastianelliW.SlobounovE. & NewellK. (2008). Residual deficits from concussion as revealed by virtual time-to-contact measures of postural stability. Clinical Neurophysiology 119(2) 281289. PubMed doi:10.1016/j.clinph.2007.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SlobounovS.SebastianelliW. & HallettM. (2012). Residual brain dysfunction observed one year post-mild traumatic brain injury: Combined EEG and balance study. Clinical Neurophysiology 123(9) 17551761. PubMed doi:10.1016/j.clinph.2011.12.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SlobounovS.M.GayM.ZhangK.JohnsonB.PennellD.SebastianelliW.HallettM. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage 55(4) 17161727. PubMed doi:10.1016/j.neuroimage.2011.01.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • SlobounovS.M.SlobounovaE.S. & NewellK.M. (1997). Virtual time-to-collision and human postural control. Journal of Motor Behavior 29(3) 263281. PubMed doi:10.1080/00222899709600841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SteinerJ.L.MurphyE.A.McClellanJ.L.CarmichaelM.D. & DavisJ.M. (2011). Exercise training increases mitochondrial biogenesis in the brain. Journal of Applied Physiology 11110661071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StoneJ.L. & BailesJ.E. (2014). In the absence of diagnosed concussion in collegiate contact sport athletes, a relationship is suggested between the effects of head impact exposure, white matter diffusivity measures and cognition. Evidence-Based Medicine 19(4) 157. PubMed doi:10.1136/eb-2014-101750

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TalavageT.M.NaumanE.A.BreedloveE.L.YorukU.DyeA.E.MorigakiK.E.LeverenzL.J. (2014). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. Journal of Neurotrauma 31(4) 327338. PubMed doi:10.1089/neu.2010.1512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TaylorJ.M.MontgomeryM.H.GregoryE.J. & BermanN.E.J. (2015). Exercise preconditioning improves traumatic brain injury outcomes. Brain Research 1622414429. PubMed doi:10.1016/j.brainres.2015.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TeelE.F.RayW.J.GeronimoA.M. & SlobounovS.M. (2014). Residual alterations of brain electrical activity in clinically asymptomatic concussed individuals: An EEG study. Clinical Neurophysiology 125(4) 703707. PubMed doi:10.1016/j.clinph.2013.08.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThériaultM.De BeaumontL.GosselinN.FilipinniM. & LassondeM. (2009). Electrophysiological abnormalities in well functioning multiple concussed athletes. Brain Injury 23(11) 899906. doi:10.1080/02699050903283189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThériaultM.De BeaumontL.TremblayS.LassondeM. & JolicoeurP. (2011). Cumulative effects of concussions in athletes revealed by electrophysiological abnormalities on visual working memory. Journal of Clinical and Experimental Neuropsychology 33(1) 3041. doi:10.1080/13803391003772873

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThompsonJ.SebastianelliW. & SlobounovS. (2005). EEG and postural correlates of mild traumatic brain injury in athletes. Neuroscience Letters 377(3) 158163. PubMed doi:10.1016/j.neulet.2004.11.090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VagnozziR.TavazziB.SignorettiS.AmoriniA.M.BelliA.CimattiM.LazzarinoG. (2007). Temporal window of metabolic brain vulnerability to concussions: Mitochondrial-related impairment--part I. Neurosurgery 61(2) 379388; discussion 388–389. PubMed doi:10.1227/01.NEU.0000280002.41696.D8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VaynmanS.YingZ. & Gomez-PinillaF. (2003). Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122(3) 647657. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WardA. (1964). The physiology of concussion. Clinical Neurosurgery 1295111.

  • WindleW.F.GroatR.A. & FoxC.A. (1946). Structural changes in the brain in experimental concussion. Archives of Neurology and Psychiatry 55162164. PubMed

    • Search Google Scholar
    • Export Citation
  • WiseE.K.HoffmanJ.M.PowellJ.M.BombardierC.H. & BellK.R. (2012). Benefits of exercise maintenance after traumatic brain injury. Archives of Physical Medicine and Rehabilitation 93(8) 13191323. PubMed doi:10.1016/j.apmr.2012.05.009

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 42 42 16
Full Text Views 1 1 1
PDF Downloads 1 1 1
Altmetric Badge
PubMed
Google Scholar