Ordinary behavior, such as walking, reading, and throwing, depends on real-time perceptual guidance. In this article, I discuss the nature of perceptual information that, in principle, might be sufficient for the guidance of movement to achieve behavioral goals. I argue that we achieve behavioral goals by controlling movements relative to multiple physical referents. Movement relative to different physical referents causes changes in the structure of different forms of ambient energy (e.g., light, sound) and, therefore, to changes in sensory stimulation. I claim that movement always is controlled simultaneously relative to multiple referents, such that no single form of ambient energy can, in principle, contain information that is sufficient for successful control. The needed perceptual information exists, I claim, solely in the global array, that is, in emergent, higher-order patterns that extend across different forms of ambient energy. I review formal and empirical examples, and discuss implications for kinesiology.