Past studies have emphasized the beneficial effect of additional visual feedback (VFB) on the capacity of healthy adults to decrease the amplitudes of the center-of-pressure minus center-of-gravity (CP-CGv) movements. To better assess these capacities, 56 subjects were asked to stand still on a force platform and to use the visual information provided. Dependency coefficients, based on their capacity to lower their CP-CGv movements and therefore relax their lower limb muscles, as well as parameters aimed at characterizing their postural strategies were measured across VFB conditions including (1) CP displacements in real time (VFBCP0), (2) CP displacements with a 600-ms delay (VFBCP600), and (3) CP-CGv displacements with a 600-ms delay (VFBCP-CG600). A non-VFB condition (eyes open) was also included. Several linear correlations were used to specify the relation between subjects’ capacity to relax, compared with the VFBCP0 condition, across the three remaining conditions. The data highlight the complementary nature of the VFB conditions and establish the postural control behaviors necessary to use these VFB protocols efficiently.