Coordination Patterns of Foot Dynamics in the Control of Upright Standing

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

In this study, two force platforms were synchronized to investigate the coordination of the right and left foot center of pressure (COPR and COPL) and its relation to the COPNET in the control of 5 upright postures with and without visual information. The results revealed that the standard deviation (SD) of COPL, COPR, and COPNET progressively increased in the more challenging staggered and tandem stances, respectively, and to a lesser degree with the absence of visual information. Circular analysis of the relative phase of COPL and COPR revealed that the coupling pattern and variability were dependent on postural stances and the availability of vision. A negative correlation between the variability of the relative phase of the two feet COPs and the SD of the COPNET in the anterior-posterior (AP) direction was evident most strongly in the no vision conditions. Thus, the asymmetry of the mechanical constraints on the feet as a function of stance organize the coordination patterns of the feet COPs while the degree of adaptive variation between the feet COPs is dependent on both the mechanical constraints and the availability of vision.

The authors are with the Department of Kinesiology, The Pennsylvania State University, University Park, PA.

All Time Past Year Past 30 Days
Abstract Views 39 39 3
Full Text Views 0 0 0
PDF Downloads 0 0 0