Dynamic Fatigue Does Not Alter Soleus H-Reflexes Conditioned by Homonymous or Heteronymous Pathways

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

H-reflex depression (diminution of amplitude after a conditioning stimulus) is mediated presynaptically and therefore can help distinguish central versus peripheral mechanisms of fatigue. We examined the effects of a dynamic exercise protocol on H-reflex depression using two conditioning methods: homonymous conditioning (paired-pulse tibial nerve stimulation); and heteronymous conditioning (common peroneal nerve stimulation). Ten subjects performed dynamic contractions of the soleus muscle through 30° ankle range of motion. The concentric phase required a target force of 10% of maximum voluntary isometric contraction (MVIC) and the eccentric phase force target was 80% MVIC. Fatigue persisted for >20 min after cessation of the exercise. Compared with prefatigue values, the dynamic fatigue protocol did not increase presynaptic inhibition after either homonymous or heteronymous conditioning. Peak to peak amplitude of unconditioned H-reflexes was likewise unchanged despite a long term depression of muscle force (long duration fatigue). These results suggest that persistent fatigue after dynamic exercise is attributed to muscle changes and not altered spinal mechanisms.

Oza is with the Dept. of Physical Therapy, University of the Pacific, Stockton, CA. Dudley-Javoroski and Shields are with the Dept. of Physical Therapy Rehabilitation Science, University of Iowa, Iowa City, IA.

Address author correspondence to Shauna Dudley-Javoroski at shauna-dudley@uiowa.edu.