Vertical Finger Displacement Is Reduced in Index Finger Tapping During Repeated Bout Rate Enhancement

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

The present study analyzed (a) whether a recently reported phenomenon of repeated bout rate enhancement in finger tapping (i.e., a cumulating increase in freely chosen finger tapping frequency following submaximal muscle activation in the form of externally unloaded voluntary tapping) could be replicated and (b) the hypotheses that the faster tapping was accompanied by changed vertical displacement of the fingertip and changed peak force during tapping. Right-handed, healthy, and recreationally active individuals (n = 24) performed two 3-min index finger tapping bouts at freely chosen tapping frequency, separated by 10-min rest. The recently reported phenomenon of repeated bout rate enhancement was replicated. The faster tapping (8.8 ± 18.7 taps/min, corresponding to 6.0 ± 11.0%, p = .033) was accompanied by reduced vertical displacement (1.6 ± 2.9 mm, corresponding to 6.3 ± 14.9%, p = .012) of the fingertip. Concurrently, peak force was unchanged. The present study points at separate control mechanisms governing kinematics and kinetics during finger tapping.

Mora-Jensen, Madeleine, and Hansen are with the Research Interest Group of Physical Activity and Human Performance, SMI®, Dept. of Health Science and Technology, Aalborg University, Aalborg, Denmark.

Address author correspondence to Ernst Albin Hansen at eah@hst.aau.dk.
  • Aboodarda, S.J., Copithorne, D.B., Pearcey, G.E., Button, D.C., & Power, K.E. (2015). Changes in supraspinal and spinal excitability of the biceps brachii following brief, non-fatiguing submaximal contractions of the elbow flexors in resistance-trained males. Neuroscience Letters, 607, 66–71. PubMed doi:10.1016/j.neulet.2015.09.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bella, S.D., & Palmer, C. (2011). Rate effects on timing, key velocity, and finger kinematics in piano performance. PLoS ONE, 6, 20518. PubMed doi:10.1371/journal.pone.0020518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-H., Johnson, P.W., Katz, J.N., Eisen, E.A., & Dennerlein, J.T. (2009). Typing keystroke duration changed after submaximal isometric finger exercises. European Journal of Applied Physiology, 105, 93–101. PubMed doi:10.1007/s00421-008-0878-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Luca, C.J., & Erim, Z. (1994). Common drive of motor units in regulation of muscle force. Trends in Neurosciences, 17, 299–305. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennerlein, J.T., Mote, C.D., Jr., & Rempel, D.M. (1998). Control strategies for finger movement during touch-typing. The role of the extrinsic muscles during a keystroke. Experimental Brain Research, 121, 1–6. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominici, N., Ivanenko, Y.P., Cappellini, G., d’Avella, A., Mondì, V., Cicchese, M., … Lacquaniti, F. (2011). Locomotor primitives in newborn babies and their development. Science, 334, 997–999. PubMed doi:10.1126/science.1210617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finkel, E., Etlin, A., Cherniak, M., Mor, Y., Lev-Tov, A., & Anglister, L. (2014). Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections. Journal of Comparative Neurology, 522, 3437–3455. PubMed doi:10.1002/cne.23613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goulding, M. (2009). Circuits controlling vertebrate locomotion: Moving in a new direction. Nature Reviews Neuroscience, 10, 507–518. PubMed doi:10.1038/nrn2608

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haken, H., Kelso, J.A., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammond, G., & Gunasekera, S. (2008). Production of successive force impulses by the left and right hands. Journal of Motor Behavior, 40, 409–416. PubMed doi:10.3200/JMBR.40.5.409-416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Ebbesen, B.D., Dalsgaard, A., Mora-Jensen, M.H., & Rasmussen, J. (2015). Freely chosen index finger tapping frequency is increased in repeated bouts of tapping. Journal of Motor Behavior, 47, 490–496. PubMed doi:10.1080/00222895.2015.1015675

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., & Ohnstad, A.E. (2008). Evidence for freely chosen pedalling rate during submaximal cycling to be a robust innate voluntary motor rhythm. Experimental Brain Research, 186, 365–373. PubMed doi:10.1007/s00221-007-1240-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Voigt, M., Kersting, U.G., & Madeleine, P. (2014). Frequency and pattern of rhythmic leg movement in humans after fatiguing exercises. Motor Control, 18, 297–309. PubMed doi:10.1123/mc.2013-0044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeka, J.J., Kelso, J.A.S., & Kiemel, T. (1993). Spontaneous transitions and symmetry: Pattern dynamics in human four-limb coordination. Human Movement Science, 12, 627–651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jindrich, D.L., Zhou, Y., Becker, T., & Dennerlein, J.T. (2003). Non-linear viscoelastic models predict fingertip pulp force-displacement characteristics during voluntary tapping. Journal of Biomechanics, 36, 497–503. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, B.A., Kelso, J.A., Saltzman, E.L., & Schöner, G. (1987). Space-time behavior of single and bimanual rhythmical movements: Data and limit cycle model. Journal of Experimental Psychology: Human Perception and Performance, 13, 178–192. PubMed

    • Search Google Scholar
    • Export Citation
  • Keele, S.W., Ivry, R.I., & Pokorny, R.A. (1987). Force control and its relation to timing. Journal of Motor Behavior, 19, 96–114. PubMed doi:10.1080/00222895.1987.10735402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelso, J.A.S., & Schöner, G. (1988). Self-organization of coordinative movement patterns. Human Movement Science, 7, 27–46. doi:10.1016/0167-9457(88)90003-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriellaars, D.J., Brownstone, R.M., Noga, B.R., & Jordan, L.M. (1994). Mechanical entrainment of fictive locomotion in the decerebrate cat. Journal of Neurophysiology, 71, 2074–2086. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueh, D., Barnett, W.H., Cymbalyuk, G.S., & Calabrese, R.L. (2016). Na+/K+ pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches. eLife, 5, e19322. doi:10.7554/eLife.19322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCrea, D.A., & Rybak, I.A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57, 134–146. PubMed doi:10.1016/j.brainresrev.2007.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perret, C., & Cabelguen, J.-M. (1980). Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Research, 187, 333–352. PubMed doi:10.1016/0006-8993(80)90207-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prochazka, A., & Yakovenko, S. (2007). The neuromechanical tuning hypothesis. Progress in Brain Research, 165, 255–265. PubMed doi:10.1016/S0079-6123(06)65016-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardroodian, M., Madeleine, P., Mora-Jensen, M.H., & Hansen, E.A. (2016). Characteristics of finger tapping are not affected by heavy strength training. Journal of Motor Behavior, 48, 256–263. PubMed doi:10.1080/00222895.2015.1089832

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardroodian, M., Madeleine, P., Voigt, M., & Hansen, E.A. (2015). Freely chosen stride frequencies during walking and running are not correlated with freely chosen pedalling frequency and are insensitive to strength training. Gait & Posture, 42, 60–64. PubMed doi:10.1016/j.gaitpost.2015.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, K., Tamura, Y., Tsuji, T., Kandori, A., & Sakoda, S. (2011). A CPG synergy model for evaluation of human finger tapping movements. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 4443–4448. PubMed doi:10.1109/IEMBS.2011.6091102

    • Search Google Scholar
    • Export Citation
  • Sternad, D., Dean, W.J., & Newell, K.M. (2000). Force and timing variability in rhythmic unimanual tapping. Journal of Motor Behavior, 32, 249–267. PubMed doi:10.1080/00222890009601376

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, M., Johnels, J.Å., Lindh, J., Laakso, K., & Hartelius, L. (2016). Syllable repetition vs. finger tapping: Aspects of motor timing in 100 healthy adults. Motor Control, 20(3), 233–254. PubMed doi:10.1123/mc.2014-0068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teo, W.P., Rodrigues, J.P., Mastaglia, F.L., & Thickbroom, G.W. (2013). Comparing kinematic changes between a finger-tapping task and unconstrained finger flexion-extension task in patients with Parkinson’s disease. Experimental Brain Research, 227, 323–331. PubMed doi:10.1007/s00221-013-3491-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A.M., & Kristoffersen, A.B. (1973). The timing of interresponse intervals. Perception & Psychophysics, 13, 455–460. doi:10.3758/BF03205802

  • Zentgraf, K., Lorey, B., Bischoff, M., Zimmermann, K., Stark, R., & Munzert, J. (2009). Neural correlates of attentional focusing during finger movements: A fMRI study. Journal of Motor Behavior, 41, 535–541. PubMed doi:10.3200/35-08-091

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 46 46 4
Full Text Views 1 1 0
PDF Downloads 2 2 0