Assessment via the Oculus of Visual “Weighting” and “Reweighting” in Young Adults

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Substantial advances in virtual reality technology open an exciting window toward better understanding of subdomains of balance control. Here, we studied whether a portable virtual reality headset can be used to test sensory integration for balance. Twenty young adults stood on a both-sides-up ball or floor. Moving spheres were projected from an Oculus Development Kit 2 at various amplitudes and frequencies. Participants’ gains indicated visual “weighting” when standing on both-sides-up but not on the floor and “reweighting” with increased visual amplitude. Intraclass correlations showed acceptable to good reliability for all floor conditions and for some of the both-sides-up conditions when we repeated the protocol a week later. Future steps to further develop our paradigm into a clinical assessment of sensory integration for postural control are discussed.

Lubetzky and Darmanin are with the Dept. of Physical Therapy, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY. Harel is with the Center for the Promotion of Research Involving Innovative Statistical Methodology, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY. Perlin is with the Dept. of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY.

Address author correspondence to Anat V. Lubetzky at anat@nyu.edu.
  • Allison, L.K., Kiemel, T., & Jeka, J.J. (2006). Multisensory reweighting of vision and touch is intact in healthy and fall-prone older adults. Experimental Brain Research, 175(2), 342–352. PubMed doi:10.1007/s00221-006-0559-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, M., Tokita, T., Kuze, B., Mizuta, K., & Ito, Y. (2014). A characteristic pattern in the postural sway of unilateral vestibular impaired patients. Gait & Posture, 40(3), 435–440. PubMed doi:10.1016/j.gaitpost.2014.05.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. doi:10.18637/jss.v067.i01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, W.J., Trost, S.G., Bauman, A., Mummery, K., & Owen, N. (2004). Test-retest reliability of four physical activity measures used in population surveys. Journal of Science and Medicine in Sport, 7(2), 205–215. PubMed doi:10.1016/S1440-2440(04)80010-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, H., Blatchly, C.A., & Gombash, L.L. (1993). A study of the clinical test of sensory interaction and balance. Physical Therapy, 73(6), 346–351. PubMed doi:10.1093/ptj/73.6.346

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, C.L., Marshall, A.L., Sjöström, M., Bauman, A.E., Booth, M.L., Ainsworth, B.E., … Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise, 35(8), 1381–1395. PubMed doi:10.1249/01.MSS.0000078924.61453.FB

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnoff, J.T., Peterson, V.J., Hollman, J.H., & Smith, J. (2009). Intrarater and interrater reliability of the balance error scoring system (BESS). PM&R, 1(1), 50–54. PubMed doi:10.1016/j.pmrj.2008.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford-Smith, C.D., Wyman, J.F., Elswick, R.K., Fernandez, T., & Newton, R.A. (1995). Test-retest reliability of the sensory organization test in noninstitutionalized older adults. Archives of Physical Medicine and Rehabilitation, 76(1), 77–81. PubMed doi:10.1016/S0003-9993(95)80047-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelman, A., & Hill, A. (2007). Data analysis using regression and multilevel/hierarchical models (Vol. 1). Cambridge, UK: Cambridge University Press.

    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Shupert, C.L., & Mirka, A. (1989). Components of postural dyscontrol in the elderly: A review. Neurobiology of Aging, 10(6), 727–738. PubMed doi:10.1016/0197-4580(89)90010-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Wrisley, D.M., & Frank, J. (2009). The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Physical Therapy, 89(5), 484–498. PubMed doi:10.2522/ptj.20080071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, S., Agada, P., Kiemel, T., & Jeka, J.J. (2014). Dynamic reweighting of three modalities for sensor fusion. PLoS ONE, 9(1), 88132. PubMed doi:10.1371/journal.pone.0088132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeka, J., Allison, L., Saffer, M., Zhang, Y., Carver, S., & Kiemel, T. (2006). Sensory reweighting with translational visual stimuli in young and elderly adults: The role of state-dependent noise. Experimental Brain Research, 174(3), 517–527. PubMed doi:10.1007/s00221-006-0502-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeka, J., Oie, K.S., & Kiemel, T. (2000). Multisensory information for human postural control: Integrating touch and vision. Experimental Brain Research, 134(1), 107–125. PubMed doi:10.1007/s002210000412

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeka, J.J., Oie, K.S., & Kiemel, T. (2008). Asymmetric adaptation with functional advantage in human sensorimotor control. Experimental Brain Research, 191(4), 453–463. PubMed doi:10.1007/s00221-008-1539-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kackar, R., & Harville, D. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association, 79(388), 853–862. doi:10.1080/01621459.1984.10477102

    • Search Google Scholar
    • Export Citation
  • Kennedy, R.S., Fowlkes, J.E., Berbaum, K.S., & Lilienthal, M.G. (1992). Use of a motion sickness history questionnaire for prediction of simulator sickness. Aviation, Space, and Environmental Medicine, 63(7), 588–593. PubMed

    • Search Google Scholar
    • Export Citation
  • Kirchner, M., Schubert, P., Getrost, T., & Haas, C.T. (2013). Effect of altered surfaces on postural sway characteristics in elderly subjects. Human Movement Science, 32(6), 1467–1479. PubMed doi:10.1016/j.humov.2013.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuznetsova, A., Brockhoff, P.B., & Christensen, R.H.B. (2016). lmerTest: Tests in linear mixed effects models (Version 2.0-30). Retrieved from https://cran.r-project.org/web/packages/lmerTest/index.html

    • Export Citation
  • Logan, D., Kiemel, T., & Jeka, J.J. (2014). Asymmetric sensory reweighting in human upright stance. PLoS ONE, 9(6), e100418. PubMed doi:10.1371/journal.pone.0100418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubetzky-Vilnai, A., McCoy, S.W., Price, R., & Ciol, M.A. (2015). Young adults largely depend on vision for postural control when standing on a BOSU ball but not on foam. Journal of Strength and Conditioning Research, 29(10), 2907–2918. PubMed doi:10.1519/JSC.0000000000000935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterka, R.J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology, 88(3), 1097–1118. PubMed

  • Polastri, P.F., & Barela, J.A. (2013). Adaptive visual re-weighting in children’s postural control. PLoS ONE, 8(12), e82215. PubMed doi:10.1371/journal.pone.0082215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portney, L.G., & Watkins, M.P. (2015). Foundations of clinical research: Applications to practice (3rd ed.). Philadelphia, PA: F.A. Davis Company.

    • Search Google Scholar
    • Export Citation
  • R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

    • Export Citation
  • Redfern, M.S., Yardley, L., & Bronstein, A.M. (2001). Visual influences on balance. Journal of Anxiety Disorders, 15(1–2), 81–94. PubMed doi:10.1016/S0887-6185(00)00043-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revelle, W. (2016). psych: Procedures for psychological, psychometric, and personality research (Version 1.6.4). Retrieved from https://cran.r-project.org/web/packages/psych/index.html

    • Export Citation
  • Shrout, P., & Fleiss, J. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428. PubMed doi:10.1037/0033-2909.86.2.420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shumway-Cook, A., & Horak, F.B. (1986). Assessing the influence of sensory interaction of balance. Suggestion from the field. Physical Therapy, 66(10), 1548–1550. PubMed doi:10.1093/ptj/66.10.1548

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soames, R.W., & Atha, J. (1982). The spectral characteristics of postural sway behaviour. European Journal of Applied Physiology and Occupational Physiology, 49(2), 169–177. PubMed doi:10.1007/BF02334065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, D.R. (1985). Aliasing in human foveal vision. Vision Research, 25(2), 195–205. PubMed doi:10.1016/0042-6989(85)90113-0

All Time Past Year Past 30 Days
Abstract Views 154 154 14
Full Text Views 3 3 0
PDF Downloads 3 3 0