Inter- and Intrasubject Similarity of Muscle Synergies During Bench Press With Slow and Fast Velocity

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

We investigated the effect of low and high bar velocity on inter- and intrasubject similarity of muscle synergies during bench press. A total of 13 trained male subjects underwent two exercise conditions: a slow- and a fast-velocity bench press. Surface electromyography was recorded from 13 muscles, and muscle synergies were extracted using a nonnegative matrix factorization algorithm. The intrasubject similarity across conditions and intersubject similarity within conditions were computed for muscle synergy vectors and activation coefficients. Two muscle synergies were sufficient to describe the dataset variability. For the second synergy activation coefficient, the intersubject similarity within the fast-velocity condition was greater than the intrasubject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector. We concluded that the activation coefficients are robust within conditions, indicating a robust temporal pattern of muscular activity across individuals, but the muscle synergy vector seemed to be individually assigned.

Samani and Kristiansen are with the SMI®, Dept. of Health Science and Technology, Aalborg University, Aalborg, Denmark.

Address author correspondence to Afshin Samani at afsamani@hst.aau.dk.
  • Bernstein, N.A. (1967). The coordination and regulation of movements. London, UK: Pergamon Press.

  • Black, D.P., Riley, M.A., & McCord, C.K. (2007). Synergies in intra- and interpersonal interlimb rhythmic coordination. Motor Control, 11(4), 348373. PubMed doi:10.1123/mcj.11.4.348

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosga, J., Meulenbroek, R.G., & Cuijpers, R.H. (2010). Intra- and interpersonal movement coordination in jointly moving a rocking board. Motor Control, 14(4), 440459. PubMed doi:10.1123/mcj.14.4.440

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cameron, M., Adams, R., & Maher, C. (2003). Motor control and strength as predictors of hamstring injury in elite players of Australian football. Physical Therapy in Sport, 4(4), 159166. doi:10.1016/S1466-853X(03)00053-

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chvatal, S.A., & Ting, L.H. (2012). Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking. The Journal of Neuroscience, 32(35), 1223712250. doi:10.1523/JNEUROSCI.6344-11.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D.J., Ting, L.H., Zajac, F.E., Neptune, R.R., & Kautz, S.A. (2010). Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of Neurophysiology, 103(2), 844857. PubMed doi:10.1152/jn.00825.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danna-Dos-Santos, A., Shapkova, E.Y., Shapkova, A.L., Degani, A.M., & Latash, M.L. (2009). Postural control during upper body locomotor-like movements: Similar synergies based on dissimilar muscle modes. Experimental Brain Research, 193(4), 565579. PubMed doi:10.1007/s00221-008-1659-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danna-Dos-Santos, A., Slomka, K., Zatsiorsky, V.M., & Latash, M.L. (2007). Muscle modes and synergies during voluntary body sway. Experimental Brain Research, 179(4), 533550. PubMed doi:10.1007/s00221-006-0812-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frère, J., & Hug, F. (2012). Between-subject variability of muscle synergies during a complex motor skill. Frontiers in Computational Neuroscience, 6, 99. doi:10.3389/fncom.2012.00099

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermens, H.J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361374. PubMed doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hug, F. (2011). Can muscle coordination be precisely studied by surface electromyography? Journal of Electromyography and Kinesiology, 21(1), 112. doi:10.1016/j.jelekin.2010.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hug, F., Turpin, N.A., Couturier, A., & Dorel, S. (2011). Consistency of muscle synergies during pedaling across different mechanical constraints. Journal of Neurophysiology, 106(1), 91103. PubMed doi:10.1152/jn.01096.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, G.R., Seelhorst, D., & Snyder, S. (2003). Comparison of metabolic and heart rate responses to super slow vs. traditional resistance training. Journal of Strength and Conditioning Research, 17(1), 7681. PubMed doi:10.1519/00124278-200302000-00013

    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., & Lacquaniti, F. (2005). Coordination of locomotion with voluntary movements in humans. The Journal of Neuroscience, 25(31), 72387253. doi:10.1523/JNEUROSCI.1327-05.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology, 556(1), 267282. doi:10.1113/jphysiol.2003.057174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2006). Motor control programs and walking. The Neuroscientist, 12(4), 339348. PubMed doi:10.1177/1073858406287987

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraemer, W.J., Adams, K., Cafarelli, E., Dudley, G.A., Dooly, C., Feigenbaum, M.S., … American College of Sports Medicine. (2002). American college of sports medicine position stand. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, 34(2), 364380. PubMed doi:10.1097/00005768-200202000-00027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy, V., Latash, M.L., Scholz, J.P., & Zatsiorsky, V.M. (2003). Muscle synergies during shifts of the center of pressure by standing persons. Experimental Brain Research, 152(3), 281292. PubMed doi:10.1007/s00221-003-1574-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristiansen, M., Madeleine, P., Hansen, E.A., & Samani, A. (2015). Inter-subject variability of muscle synergies during bench press in power lifters and untrained individuals. Scandinavian Journal of Medicine & Science in Sports, 25, 8997. PubMed doi:10.1111/sms.12167

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristiansen, M., Samani, A., Madeleine, P., & Hansen, E.A. (2015). Effects of five weeks of bench press training on muscle synergies: A randomized controlled study. Journal of Strength and Conditioning Research, 30(7), 19481959. PubMed doi:10.1519/JSC.0000000000001282

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.P., & Schoner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276308. PubMed doi:10.1123/mcj.11.3.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.D., & Seung, H.S. (2001). Algorithms for non-negative matrix factorization. In T.K. Leen, T.G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (pp. 556562). Cambridge, MA: The MIT Press.

    • Search Google Scholar
    • Export Citation
  • Mathiassen, S.E., Nordander, C., Svendsen, S.W., Wellman, H.M., & Dempsey, P.G. (2005). Task-based estimation of mechanical job exposure in occupational groups. Scandinavian Journal of Work, Environment & Health, 31, 138151. doi:10.5271/sjweh.861

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontonnier, C., De Zee, M., Samani, A., Dumont, G., & Madeleine, P. (2014). Strengths and limitations of a musculoskeletal model for an analysis of simulated meat cutting tasks. Applied Ergonomics, 45(3), 592600. PubMed doi:10.1016/j.apergo.2013.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prochazka, A., Gritsenko, V., & Yakovenko, S. (2002). Sensory control of locomotion: Reflexes versus higher-level control. In S.C. Gandevia, U. Proske, & D.G. Stuart (Eds.), Sensorimotor control of movement and posture (pp. 357367). Boston, MA: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safavynia, S.A., & Ting, L.H. (2012). Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations. Journal of Neurophysiology, 107(1), 159177. PubMed doi:10.1152/jn.00653.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sale, D.G. (1988). Neural adaptation to resistance training. Medicine & Science in Sports & Exercise, 20(Suppl. 5), 135145. PubMed doi:10.1249/00005768-198810001-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltiel, P., Wyler-Duda, K., D’Avella, A., Tresch, M.C., & Bizzi, E. (2001). Muscle synergies encoded within the spinal cord: Evidence from focal intraspinal NMDA iontophoresis in the frog. Journal of Neurophysiology, 85(2), 605619. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samani, A., Pontonnier, C., Dumont, G., & Madeleine, P. (2015). Shoulder kinematics and spatial pattern of trapezius electromyographic activity in real and virtual environments. PLoS ONE, 10(3), e0116211. PubMed doi:10.1371/journal.pone.0116211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, K.M., Tresch, M.C., & Perreault, E.J. (2013). The number and choice of muscles impact the results of muscle synergy analyses. Frontiers in Computational Neuroscience, 7, 105. doi:10.3389/fncom.2013.00105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, K.M., Tresch, M.C., & Perreault, E.J. (2015). Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses. Journal of Neurophysiology, 113(7), 21022113. PubMed doi:10.1152/jn.00769.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Oviedo, G., Macpherson, J.M., & Ting, L.H. (2006). Muscle synergy organization is robust across a variety of postural perturbations. Journal of Neurophysiology, 96(3), 15301546. PubMed doi:10.1152/jn.00810.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Oviedo, G., & Ting, L.H. (2007). Muscle synergies characterizing human postural responses. Journal of Neurophysiology, 98(4), 21442156. PubMed doi:10.1152/jn.01360.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tresch, M.C., & Jarc, A. (2009). The case for and against muscle synergies. Current Opinion in Neurobiology, 19(6), 601607. PubMed doi:10.1016/j.conb.2009.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turpin, N.A., Guével, A., Durand, S., & Hug, F. (2011). Effect of power output on muscle coordination during rowing. European Journal of Applied Physiology, 111(12), 30173029. PubMed doi:10.1007/s00421-011-1928-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westcott, W., Winett, R., Anderson, E., & Wojcik, J. (2001). Effects of regular and slow speed resistance training on muscle strength. The Journal of Sports Medicine and Physical Fitness, 41(2), 154. PubMed

    • Search Google Scholar
    • Export Citation
  • Young, W.B. (2006). Transfer of strength and power training to sports performance. International Journal of Sports Physiology and Performance, 1(2), 7483. PubMed doi:10.1123/ijspp.1.2.74

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 126 125 5
Full Text Views 0 0 0
PDF Downloads 0 0 0