Precision-Dependent Changes in Motor Variability During Sustained Bimanual Reaching

in Motor Control
View More View Less
  • 1 Radboud University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

Movement variability of the upper limb was investigated using a bimanual Fitts’ task. Participants tapped rhythmically between target-pairs of different index of difficulties for three intervals of 20 min each. We studied the effects of index of difficulties and time-on-task on movement time, end-point variability, approximate entropy, and standard deviation of the relative phase. Lower index of difficulties and time-on-task caused decreasing movement time and increasing end-point variability. Moreover, standard deviation of the relative phase and approximate entropy moderately increased. By looking into the long-term effects of a sustained bimanual Fitts’ task, this is the first time such movement variability increase is demonstrated in multiple variability indices. The relevance of the findings for future studies on work-related musculoskeletal disorders is being discussed.

Longo and Meulenbroek are with the Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.

Address author correspondence to Alessia Longo at a.longo@donders.ru.nl.
  • Amazeen, E.L., Ringenbach, S.D., & Amazeen, P.G. (2005). The effects of attention and handedness on coordination dynamics in a bimanual Fitts’ law task. Experimental Brain Research, 164(4), 484499. PubMed doi:10.1007/s00221-005-2269-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batschelet, E.(1981). Circular statistics in biology. London: Academic Press.

  • Bernstein, N. (1967). The coordination and regulation of movements. Oxford, UK: Pergamon Press.

  • Borg, G. (1982). Psychophysical bases of perceived exertion. Medicine Science in Sports Exercise, 14, 377381. PubMed doi:10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzzi, U.H., Stergiou, N., Kurz, M.J., Hageman, P.A., & Heidel, J. (2003). Nonlinear dynamics indicates aging affects variability during gait. Clinical Biomechanics, 18(5), 435443. PubMed doi:10.1016/S0268-0033(03)00029-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J.N., Feldman, A.G., Mathieu, P.A., & Levin, M.F. (2008). Effects of fatigue on intermuscular coordination during repetitive hammering. Motor Control, 12(2), 7992. PubMed doi:10.1123/mcj.12.2.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falla, D., & Farina, D. (2007). Periodic increases in force during sustained contraction reduce fatigue and facilitate spatial redistribution of trapezius muscle activity. Experimental Brain Research, 182(1), 99107. PubMed doi:10.1007/s00221-007-0974-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, J.M., & Amazeen, E.L. (2011). Interpersonal Fitts’ law: When two perform as one. Experimental Brain Research, 211, 459469. PubMed doi:10.1007/s00221-011-2707-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P.M., & Peterson, J.R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology, 67, 103112. PubMed doi:10.1037/h0045689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, B., Duck, T., Mosher, M., & Mathieson, B. (1991). The coordination of bimanual aiming movements: Evidence for progressive desynchronization. The Quarterly Journal of Experimental Psychology Section A, 43(2), 205221. doi:10.1080/14640749108400967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuller, J.R., Lomond, K.V., Fung, J., & Côté, J.N. (2009). Posture-movement changes following repetitive motion-induced shoulder muscle fatigue. Journal of Electromyography and Kinesiology, 19(6), 10431052. PubMed doi:10.1016/j.jelekin.2008.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gribble, P.L., Mullin, L.I., Cothros, N., & Mattar, A. (2003). Role of cocontraction in arm movement accuracy. Journal of Neurophysiology, 89(5), 23962405. PubMed doi:10.1152/jn.01020.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, C.M., & Wolpert, D.M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780784. PubMed doi:10.1038/29528

  • Hausdorff, J.M., Rios, D.A., & Edelberg, H.K. (2001). Gait variability and fall risk in community-living older adults: A 1-year prospective study. Archives of Physical Medicine and Rehabilitation, 82(8), 10501056. PubMed doi:10.1053/apmr.2001.24893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.L., & Newell, K.M. (2008). Entropy compensation in human motor adaptation. Chaos, 18(1), 013108. doi:10.1063/1.2838854

  • Kelso, J.A.S., Southard, D.L., & Goodman, D. (1979). On the coordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 229238. PubMed doi:10.1037/0096-1523.5.2.229

    • Search Google Scholar
    • Export Citation
  • Lomond, K.V, & Côté, J.N. (2010). Movement timing and reach to reach variability during a repetitive reaching task in persons with chronic neck/shoulder pain and healthy subjects. Experimental Brain Research, 206(3), 271282. PubMed doi:10.1007/s00221-010-2405-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madeleine, P., & Farina, D. (2008). Time to task failure in shoulder elevation is associated to increase in amplitude and to spatial heterogeneity of upper trapezius mechanomyographic signals. European Journal of Applied Physiology, 102(3), 325333. PubMed doi:10.1007/s00421-007-0589-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madeleine, P., Mathiassen, S.E., & Arendt-Nielsen, L. (2008). Changes in the degree of motor variability associated with experimental and chronic neck–shoulder pain during a standardised repetitive arm movement. Experimental Brain Research, 185(4), 689698. PubMed doi:10.1007/s00221-007-1199-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marteniuk, R.G., MacKenzie, C.L., & Baba, D.M. (2007). Bimanual movement control: Information processing and interaction effects. The Quarterly Journal of Experimental Psychology Section A, 36(2), 335365. doi:10.1080/14640748408402163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meulenbroek, R.G.J., Thomassen, A.J.W.M., van Lieshout, H.P.M., & Swinnen, S.P. (1998). The stability of pen-joint and interjoint coordination in loop writing. Acta Psychologica, 100, 5570. PubMed doi:10.1016/S0001-6918(98)00025-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meulenbroek, R.G.J., Van Galen, G.P., Hulstijn, M., Hulstijn, W., & Bloemsaat, G. (2005). Muscular co-contraction covaries with task load to control the flow of motion in fine motor tasks. Biological Psychology, 68(3), 331352. PubMed doi:10.1016/j.biopsycho.2004.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, S.M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88(6) 22972301. PubMed doi:10.1073/pnas.88.6.2297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, S.M., & Goldberger, A.L. (1994). Physiological time-series analysis: What does regularity quantify? The American Journal of Physiology, 266(4 Pt. 2), 16431656. PubMed

    • Search Google Scholar
    • Export Citation
  • Riek, S., Tresilian, J.R., Mon-Williams, M., Coppard, V.L., & Carson, R.G. (2003). Bimanual aiming and overt attention: One law for two hands. Experimental Brain Research, 153, 5975. PubMed doi:10.1007/s00221-003-1581-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selen, L.P.J., Beek, P.J., & van Dieën, J.H. (2005). Can co-activation reduce kinematic variability? A simulation study. Biological Cybernetics, 93(5), 373381. PubMed doi:10.1007/s00422-005-0015-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selen, L.P.J., Beek, P.J., & van Dieën, J.H. (2007). Fatigue-induced changes of impedance and performance in target tracking. Experimental Brain Research, 181(1), 99108. PubMed doi:10.1007/s00221-007-0909-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, C.H., Boyle, J., & Kovacs, A.J. (2012). Bimanual Fitts’ tasks: Kelso, Southard, and Goodman, 1979 revisited. Experimental Brain Research, 216, 113121. PubMed doi:10.1007/s00221-011-2915-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, D., Mathiassen, S.E., Samani, A., & Madeleine, P. (2015). The combined influence of task accuracy and pace on motor variability in a standardised repetitive precision task. Ergonomics, 58(8), 13881397. PubMed doi:10.1080/00140139.2015.1005174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stergiou, N., & Decker, L.M. (2011). Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Human Movement Science, 30(5), 869888. PubMed doi:10.1016/j.humov.2011.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vereijken, B., van Emmerik, R.E.A., Whiting, H.T.A., & Newell, K.M. (1992). Free(z)ing degrees of freedom in skill acquisition. Journal of Motor Behavior, 24, 133142. doi:10.1080/00222895.1992.9941608

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yentes, J.M., Hunt, N., Schmid, K.K., Kaipust, J.P., McGrath, D., & Stergiou, N. (2013). The appropriate use of approximate entropy and sample entropy with short data sets. Annals of Biomedical Engineering, 41, 349365. PubMed doi:10.1007/s10439-012-0668-3

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 96 88 1
Full Text Views 2 2 0
PDF Downloads 0 0 0