Somatosensory Electrical Stimulation Does Not Augment Motor Skill Acquisition and Intermanual Transfer in Healthy Young Adults—A Pilot Study

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Sensory input can modify motor function and magnify interlimb transfer. We examined the effects of low-intensity somatosensory electrical stimulation (SES) on motor practice-induced skill acquisition and intermanual transfer. Participants practiced a visuomotor skill for 25 min and received SES to the practice or the transfer arm. Responses to single- and double-pulse transcranial magnetic stimulation were measured in both extensor carpi radialis. SES did not further increase skill acquisition (motor practice with right hand [RMP]: 30.8% and motor practice with right hand + somatosensory electrical stimulation to the right arm [RMP + RSES]: 27.8%) and intermanual transfer (RMP: 13.6% and RMP + RSES: 9.8%) when delivered to the left arm (motor practice with right hand + somatosensory electrical stimulation to the left arm [RMP + LSES]: 44.8% and 18.6%, respectively). Furthermore, transcranial magnetic stimulation measures revealed no changes in either hand. Future studies should systematically manipulate SES parameters to better understand the mechanisms of how SES affords motor learning benefits documented but not studied in patients.

Négyesi is with the Dept. of Biomechanics, Kinesiology, and Informatics, University of Physical Education, Budapest, Hungary; Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan. Veldman, Berghuis, and Hortobágyi are with the Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. Javet is with the Swiss Federal Institute of Sport, Magglingen, Switzerland. Tihanyi is with the Dept. of Biomechanics, Kinesiology, and Informatics, University of Physical Education, Budapest, Hungary.

Address author correspondence to János Négyesi at negyesi@dc.tohoku.ac.jp.
  • Allison, T., McCarthy, G., Wood, C.C., Williamson, P.D., & Spencer, D.D. (1989). Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. Journal of Neurophysiology, 62(3), 711–722. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asanuma, H. (1981). Functional role of sensory inputs to the motor cortex. Progress in Neurobiology, 16(3–4), 241–262. PubMed

  • Berghuis, K.M., De Rond, V., Zijdewind, I., Koch, G., Veldman, M.P., & Hortobágyi, T. (2016). Neuronal mechanisms of motor learning are age dependent. Neurobiology of Aging, 46, 149–159. PubMed doi:10.1016/j.neurobiolaging.2016.06.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuis, K.M., Veldman, M.P., Solnik, S., Koch, G., Zijdewind, I., & Hortobágyi, T. (2015). Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults. Age, 37(3), 9779. PubMed doi:10.1007/s11357-015-9779-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonato, C., Zanette, G., Manganotti, P., Tinazzi, M., Bongiovanni, G., Polo, A., & Fiaschi, A. (1996). ‘Direct’ and ‘crossed’ modulation of human motor cortex excitability following exercise. Neuroscience Letters, 216(2), 97–100. PubMed

    • Search Google Scholar
    • Export Citation
  • Broeks, J.G., Lankhorst, G.J., Rumping, K., & Prevo, A.J. (1999). The long-term outcome of arm function after stroke: Results of a follow-up study. Disability and Rehabilitation, 21(8), 357–364. PubMed doi:10.1080/096382899297459

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bütefisch, C.M., Davis, B.C., Wise, S.P., Sawaki, L., Kopylev, L., Classen, J., & Cohen, L.G. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3661–3665. doi:10.1073/pnas.97.7.3661

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celnik, P., Hummel, F., Harris-Love, M., Wolk, R., & Cohen, L.G. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 88(11), 1369–1376. PubMed doi:10.1016/j.apmr.2007.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cirillo, J., Todd, G., & Semmler, J.G. (2011). Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. European Journal of Neuroscience, 34(11), 1847–1856. PubMed doi:10.1111/j.1460-9568.2011.07870.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conforto, A.B., Ferreiro, K.N., Tomasi, C., dos Santos, R.L., Moreira, V.L., Marie, S.K., … Cohen, L.G. (2010). Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabilitation & Neural Repair, 24(3), 263–272. PubMed doi:10.1177/1545968309349946

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conforto, A.B., Kaelin-Lang, A., & Cohen, L.G. (2002). Increase in hand muscle strength of stroke patients after somatosensory stimulation. Annals of Neurology, 51(1), 122–125. PubMed doi:10.1002/ana.10070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrensberger, M., Simpson, D., Broderick, P., & Monaghan, K. (2016). Cross-education of strength has a positive impact on post-stroke rehabilitation: A systematic literature review. Topics in Stroke Rehabilitation, 23(2), 126–135. PubMed doi:10.1080/10749357.2015.1112062

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farthing, J.P., & Zehr, E.P. (2014). Restoring symmetry: Clinical applications of cross-education. Exercise and Sport Sciences Reviews, 42(2), 70–75. PubMed doi:10.1249/JES.0000000000000009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. PubMed doi:10.3758/BF03193146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaszewski, S.M., Siedentopf, C.M., Koppelstaetter, F., Rhomberg, P., Guendisch, G.M., Schlager, A., … Mottaghy, F.M. (2004). Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology, 62(12), 2262–2269. PubMed doi:10.1212/WNL.62.12.2262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, B.S., Jang, S.H., Chang, Y., Byun, W.M., Lim, S.K., & Kang, D.S. (2003). Functional magnetic resonance image finding of cortical activation by neuromuscular electrical stimulation on wrist extensor muscles. American Journal of Physical Medicine & Rehabilitation, 82(1), 17–20. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hari, R., Hämäläinen, H., Hämäläinen, M., Kekoni, J., Sams, M., & Tiihonen, J. (1990). Separate finger representations at the human second somatosensory cortex. Neuroscience, 37(1), 245–249. PubMed doi:10.1016/0306-4522(90)90210-U

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hari, R., Reinikainen, K., Kaukoranta, E., Hämäläinen, M., Ilmoniemi, R., Penttinen, A., … Teszner, D. (1984). Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalography & Clinical Neurophysiology, 57(3), 254–263. PubMed doi:10.1016/0013-4694(84)90126-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortobágyi, T., Richardson, S.P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., … Hallett, M. (2011). Interhemispheric plasticity in humans. Medicine & Science in Sports & Exercise, 43(7), 1188–1199. PubMed doi:10.1249/MSS.0b013e31820a94b8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortobágyi, T., Taylor, J.L., Petersen, N.T., Russell, G., & Gandevia, S.C. (2003). Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Journal of Neurophysiology, 90(4), 2451–2459. PubMed doi:10.1152/jn.01001.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J.L., Marstrand, P.C., & Nielsen, J.B. (2005). Motor skill training and strength training are associated with different plastic changes in the central nervous system. Journal of Applied Physiology, 99(4), 1558–1568. PubMed doi:10.1152/japplphysiol.01408.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaelin-Lang, A., Luft, A.R., Sawaki, L., Burstein, A.H., Sohn, Y.H., & Cohen, L.G. (2002). Modulation of human corticomotor excitability by somatosensory input. The Journal of Physiology, 540(Pt. 2), 623–633. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koesler, I.B., Dafotakis, M., Ameli, M., Fink, G.R., & Nowak, D.A. (2008). Electrical somatosensory stimulation modulates hand motor function in healthy humans. Journal of Neurology, 255(10), 1567–1573. PubMed doi:10.1007/s00415-008-0990-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kujirai, T., Caramia, M.D., Rothwell, J.C., Day, B.L., Thompson, P.D., Ferbert, A., … Marsden, C.D. (1993). Corticocortical inhibition in human motor cortex. The Journal of Physiology, 471, 501–519. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwakkel, G., Winters, C., van Wegen, E.E., Nijland, R.H., van Kuijk, A.A., Visser-Meily, A., … EXPLICIT-Stroke Consortium. (2016). Effects of unilateral upper limb training in two distinct prognostic groups early after stroke: The EXPLICIT-Stroke Randomized Clinical Trial. Neurorehabilitation & Neural Repair, 30(9), 804–816. PubMed doi:10.1177/1545968315624784

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M., Hinder, M.R., Gandevia, S.C., & Carroll, T.J. (2010). The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice. The Journal of Physiology, 588(Pt. 1), 201–212. doi:10.1113/jphysiol.2009.183855

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Morel, A., Wannier, T., & Rouiller, E.M. (2002). Origins of callosal projections to the supplementary motor area (SMA): A direct comparison between pre-SMA and SMA-proper in macaque monkeys. The Journal of Comparative Neurology, 443(1), 71–85. PubMed doi:10.1002/cne.10087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munn, J., Herbert, R.D., Hancock, M.J., & Gandevia, S.C. (2005). Training with unilateral resistance exercise increases contralateral strength. Journal of Applied Physiology, 99(5), 1880–1884. PubMed doi:10.1152/japplphysiol.00559.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. PubMed doi:10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Opie, G.M., Catcheside, P.G., Usmani, Z.A., Ridding, M.C., & Semmler, J.G. (2013). Motor cortex plasticity induced by theta burst stimulation is impaired in patients with obstructive sleep apnoea. European Journal of Neuroscience, 37(11), 1844–1852. PubMed doi:10.1111/ejn.12203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, M.A., Lungholt, B.K., Nyborg, K., & Nielsen, J.B. (2004). Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Experimental Brain Research, 159(2), 197–205. PubMed doi:10.1007/s00221-004-1947-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, M.A., Wise, S.P., Willingham, D.T., & Cohen, L.G. (2007). Neurophysiological mechanisms involved in transfer of procedural knowledge. The Journal of Neuroscience, 27(5), 1045–1053. PubMed doi:10.1523/JNEUROSCI.4128-06.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porter, L.L., Sakamoto, T., & Asanuma, H. (1990). Morphological and physiological identification of neurons in the cat motor cortex which receive direct input from the somatic sensory cortex. Experimental Brain Research, 80(1), 209–212. PubMed doi:10.1007/BF00228864

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossi, S., Hallett, M., Rossini, P.M., Pascual-Leone, A., & Safety of TMS Consensus Group. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008–2039. PubMed doi:10.1016/j.clinph.2009.08.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothwell, J.C., Hallett, M., Berardelli, A., Eisen, A., Rossini, P., & Paulus, W. (1999). Magnetic stimulation: Motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalography & Clinical Neurophysiology. Supplement, 52, 97–103. PubMed

    • Search Google Scholar
    • Export Citation
  • Rothwell, J.C., & Rosenkranz, K. (2005). Role of afferent input in motor organization in health and disease. IEEE Engineering in Medicine and Biology Magazine, 24(1), 40–44. PubMed doi:10.1109/MEMB.2005.1384099

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawaki, L., Wu, C.W., Kaelin-Lang, A., & Cohen, L.G. (2006). Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke. Stroke, 37(1), 246–247. PubMed doi:10.1161/01.STR.0000195130.16843.ac

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H.W., & Sohn, Y.H. (2011). Interhemispheric transfer of paired associative stimulation-induced plasticity in the human motor cortex. Neuroreport, 22(4), 166–170. PubMed doi:10.1097/WNR.0b013e3283439511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solnik, S., Rider, P., Steinweg, K., DeVita, P., & Hortobágyi, T. (2010). Teager–Kaiser energy operator signal conditioning improves EMG onset detection. European Journal of Applied Physiology, 110(3), 489–498. PubMed doi:10.1007/s00421-010-1521-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorinola, I.O., Bateman, R.W., & Mamy, K. (2012). Effect of somatosensory stimulation of two and three nerves on upper limb function in healthy individuals. Physiotherapy Research International, 17(2), 74–79. PubMed doi:10.1002/pri.515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinberg, F., Pixa, N.H., & Doppelmayr, M. (2016). Mirror visual feedback training improves intermanual transfer in a sport-specific task: A comparison between different skill levels. Neural Plasticity, 2016, 8628039. PubMed doi:10.1155/2016/8628039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urbin, M.A., Harris-Love, M.L., Carter, A.R., & Lang, C.E. (2015). High-intensity, unilateral resistance training of a non-paretic muscle group increases active range of motion in a severely paretic upper extremity muscle group after stroke. Frontiers in Neurology, 6, 119. doi:10.3389/fneur.2015.00119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veldman, M.P., Maffiuletti, N.A., Hallett, M., Zijdewind, I., & Hortobágyi, T. (2014). Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neuroscience & Biobehavioral Reviews, 47, 22–35. PubMed doi:10.1016/j.neubiorev.2014.07.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veldman, M.P., Zijdewind, I., Maffiuletti, N.A., & Hortobágyi, T. (2016). Motor skill acquisition and retention after somatosensory electrical stimulation in healthy humans. Frontiers in Human Neuroscience, 10, 115. PubMed doi:10.3389/fnhum.2016.00115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veldman, M.P., Zijdewind, I., Solnik, S., Maffiuletti, N.A., Berghuis, K.M., Javet, M., … Hortobágyi, T. (2015). Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans. European Journal of Applied Physiology, 115(12), 2505–2519. PubMed doi:10.1007/s00421-015-3248-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.W., Seo, H.J., & Cohen, L.G. (2006). Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Archives of Physical Medicine and Rehabilitation, 87(3), 351–357. PubMed doi:10.1016/j.apmr.2005.11.019

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 692 692 11
Full Text Views 8 8 0
PDF Downloads 6 6 0