Systematic, Unintended Drifts in the Cyclic Force Produced with the Fingertips

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Cyclic isometric finger-force patterns established using visual feedback show systematic drifts when the feedback is removed. Force changes at multiple time scales and in opposite directions have been reported. For further characterization of these drifts, healthy subjects produced isometric, cyclic finger force with and without visual feedback at various initial amplitudes and frequencies. We hypothesized that on feedback removal, the amplitude will be attracted toward a preferred value that is frequency dependent. We found that the amplitude always increased after feedback removal. The magnitude of the amplitude increase changed with initial frequency, but it was invariant over the explored range of initial amplitudes. Thus, the existence of a preferred amplitude of force oscillations was not supported. We interpret these results within the referent configuration and the referent configuration back-coupling hypotheses. These data will inform a mathematical model of finger-force drifts. However, currently, they raise more questions than they answer, and a coherent account of finger-force drifts remains a challenge.

Ambike is with the Dept. of Health and Kinesiology, Purdue University, West Lafayette, IN. Mattos is with the Dept. of Psychological Sciences, University of Missouri, Columbia, MO. Zatsiorsky and Latash are with the Dept. of Health and Kinesiology, The Pennsylvania State University, University Park, PA.

Address author correspondence to Satyajit Ambike at sambike@purdue.edu.
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016a). The nature of constant and cyclic force production: Unintentional force-drift characteristics. Experimental Brain Research, 234, 197208. PubMed doi:10.1007/s00221-015-4453-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016b). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience, 315, 150161. doi:10.1016/j.neuroscience.2015.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016c). Unsteady steady-states: Central causes of unintentional force drift. Experimental Brain Research, 234, 35973611. PubMed doi:10.1007/s00221-016-4757-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Paclet, F., Zatsiorsky, V.M., & Latash, M.L. (2014). Factors affecting grip force: Anatomy, mechanics, and referent configurations. Experimental Brain Research, 232, 12191231. PubMed doi:10.1007/s00221-014-3838-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Zatsiorsky, V.M., & Latash, M.L. (2015). Processes underlying unintentional finger-force changes in the absence of visual feedback. Experimental Brain Research, 233, 711721. PubMed doi:10.1007/s00221-014-4148-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonnard, M., & Pailhous, J. (1999). Contribution of proprioceptive information to preferred versus constrained space-time behavior in rhythmical movements. Experimental Brain Research, 128, 568572. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics, 11, 565578.

    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1980). Superposition of motor programs. II. Rapid flexion of forearm in man. Neuroscience, 5, 9195. PubMed

  • Feldman, A.G. (2009). Origin and advances of the equilibrium-point hypothesis. Advances in Experimental Medicine and Biology, 629, 637643. PubMed doi:10.1007/978-0-387-77064-2_34

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2015). Referent control of action and perception: Challenging conventional theories in behavioral science. New York, NY: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graziano, M.S.A., Taylor, C.S.R., & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841851. PubMed doi:10.1016/S0896-6273(02)00698-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatsopoulos, N.G., & Warren, W.H. , Jr. (1996). Resonance tuning in rhythmic arm movements. Journal of Motor Behavior, 28, 314. PubMed doi:10.1080/00222895.1996.9941728

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, M.J., Muir, B.C., & Rietdyk, S. (2012). Factors leading to obstacle contact during adaptive locomotion. Experimental Brain Research, 223, 219231. PubMed doi:10.1007/s00221-012-3253-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, M.J., Romine, N.L., Stumpf, D.M., & Rietdyk, S. (2014). Memory-guided obstacle crossing: More failures were observed for the trail limb versus lead limb. Experimental Brain Research, 232, 21312142. PubMed doi:10.1007/s00221-014-3903-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Ambike, S., Lewis, M.M., Huang, X., & Latash, M.L. (2015). Finger force changes in the absence of visual feedback in patients with Parkinson’s disease. Clinical Neurophysiology, 127, 684692. PubMed doi:10.1016/j.clinph.2015.05.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, R.S., & Flanagan, J.R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10, 345359. PubMed doi:10.1038/nrn2621

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, B.A., Kelso, J.A., Saltzman, E.L., & Schoner, G. (1987). Space-time behavior of single and bimanual rhythmical movements: Data and limit cycle model. Journal of Experimental Psychology: Human Perception and Performance, 13, 178192. PubMed

    • Search Google Scholar
    • Export Citation
  • Kelso, J.A.S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, UK: MIT Press.

  • Kelso, J.A.S., Holt, K.G., Rubin, P., & Kugler, P.N. (1981). Patterns of human interlimb coordination emerge from the properties of non-linear limit cycle oscillatory processes: Theory and data. Journal of Motor Behavior, 13, 226261. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kugler, P.N., & Turvey, M.T. (1987). Information, natural law and self-assembly of rhythmic movement. Hillsdale, NJ: Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14, 294322. PubMed

  • Latash, M.L. (2016). Towards physics of neural processes and behavior. Neuroscience & Biobehavioral Reviews, 69, 136146. PubMed doi:10.1016/j.neubiorev.2016.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Aruin, A.S., & Zatsiorsky, V.M. (1999). The basis of a simple synergy: Reconstruction of joint equilibrium trajectories during unrestrained arm movements. Human Movement Science, 18, 330. doi:10.1016/S0167-9457(98)00029-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Gottlieb, G.L. (1991). Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements. Neuroscience, 43, 697712. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.P., & Schoner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11, 276308. PubMed

  • Mansell, W. (2011). Control of perception should be operationalized as a fundamental property of the nervous system. Topics in Cognitive Science, 3, 257261. PubMed doi:10.1111/j.1756-8765.2011.01140.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilon, J.-F., De Serres, S.J., & Feldman, A.G. (2007). Threshold position control of arm movement with anticipatory increase in grip force. Experimental Brain Research, 181, 4967. PubMed doi:10.1007/s00221-007-0901-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poon, C., Chin-Cottongim, L.G., Coombes, S.A., Corcos, D.M., & Vaillancourt, D.E. (2012). Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control. Journal of Neurophysiology, 108, 13351348. PubMed doi:10.1152/jn.00972.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, W.T. (1973). Behavior: The control of perception. Chicago, IL: Aldine.

  • Reschechtko, S., Zatsiorsky, V.M., & Latash, M.L. (2015). Task-specific stability of multifinger steady-state action. Journal of Motor Behavior, 47, 365377. PubMed doi:10.1080/00222895.2014.996281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanes, J.N., Mauritz, K.-H., Evarts, E.V., Dalakas, M.C., & Chu, A. (1984). Motor deficits in patients with large-fiber sensory neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 81, 979982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaal, S., Sternad, D., Osu, R., & Kawato, M. (2004). Rhythmic arm movement is not discrete. Nature Neuroscience, 7, 11361143. PubMed doi:10.1038/nn1322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schoner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126, 289306. PubMed doi:10.1007/s002210050738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoner, G. (1995). Recent developments and problems in human movement science and their conceptual implications. Ecological Psychology, 8, 291314. doi:10.1207/s15326969eco0704_5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapkova, E.Y., Shapkova, A.L., Goodman, S.R., Zatsiorsky, V.M., & Latash, M.L. (2008). Do synergies decrease force variability? A study of single-finger and multi-finger force production. Experimental Brain Research, 188, 411425. PubMed doi:10.1007/s00221-008-1371-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slifkin, A.B., Vaillancourt, D.E., & Newell, K.M. (2000). Intermittency in the control of continuous force production. Journal of Neurophysiology, 84, 17081718. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sternad, D., & Hogan, N. (2007). On rhythmic and discrete movements: Reflections, definitions and implications for motor control. Experimental Brain Research, 181, 1330. doi:10.1007/s00221-007-0899-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., & Russell, D.M. (2002). Temporal capacity of short-term visuomotor memory in continuous force production. Experimental Brain Research, 145, 275285. PubMed doi:10.1007/s00221-002-1081-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., Thulborn, K.R., & Corcos, D.M. (2003). Neural basis for the processes that underlie visually guided and internally guided force control in humans. Journal of Neurophysiology, 90, 33303340. PubMed doi:10.1152/jn.00394.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, L., Zatsiorsky, V.M., & Latash, M.L. (2013). Equifinality and its violations in a redundant system: Multifinger accurate force production. Journal of Neurophysiology, 110, 19651973. PubMed doi:10.1152/jn.00461.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., Sternad, D., Corcos, D.M., & Vaillancourt, D.E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage, 35, 222233. PubMed doi:10.1016/j.neuroimage.2006.11.047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., Solnik, S., Wu, Y.-S., & Latash, M.L. (2014). Unintentional movements produced by back-coupling between the actual and referent body configurations: Violations of equifinality in multi-joint positional tasks. Experimental Brain Research, 232, 38473859. PubMed doi:10.1007/s00221-014-4059-x

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 79 67 4
Full Text Views 1 1 0
PDF Downloads 1 1 0