Improved Learning a Coincident Timing Task With a Predictable Resisting Force

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

The present study analyzes the learning in a coincident timing task with force perturbation. We aimed to verify whether a predictable load (constant spring) applied to hand movements could facilitate learning and, thus, performance improvement with respect to movements without any external load and an unpredictable load to perform a coincident timing task with a few number of repetitions (n = 28) under acquisition and transfer phases. The results showed that the group with a predictable load had a significant better performance with lower percentage of errors and smaller time variance in the acquisition and transfer phase. The groups with no load and unpredictable load had a similar performance in the transfer phase. It can be concluded that adding a predictable force to the coincident timing task results in performance improvement. Therefore, learning to reach a target at a correct time could be improved with the application of predictable external loads.

Forner-Cordero, Quadrado, and Tsagbey are with the Biomechatronics Lab, Dept. of Mechatronics and Mechanical Systems, Escola Politécnica, University of São Paulo, São Paulo, Brazil. Smits-Engelsman is with the Faculty of Health Sciences, Dept. of Health and Rehabilitation Sciences, University of Cape Town, Cape Town, South Africa.

Address author correspondence to Arturo Forner-Cordero at arturoforner@gmail.com.
  • Blakemore, S.J., & Sirigu, A. (2003). Action prediction in the cerebellum and in the parietal lobe. Experimental Brain Research, 153(2), 239–245. PubMed doi:10.1007/s00221-003-1597-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchette, A., & Bouyer, L.J. (2009). Timing-specific transfer of adapted muscle activity after walking in an elastic force field. Journal of Neurophysiology, 102, 568–577. PubMed doi:10.1007/s00221-003-1597-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burge, J., Ernst, M.O., & Banks, M.S. (2008). The statistical determinants of adaptation rate in human reaching. Journal of Vision, 8(4), 20. doi:10.1167/8.4.20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casellato, C., Pedrocchi, A., Zorzi, G., Rizzi, G., Ferrigno, G., & Nardocci, N. (2012). Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia. Journal of NeuroEngineering and Rehabilitation, 9, 46. PubMed doi:10.1186/1743-0003-9-46

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caselli, P., Conforto, S., Schmid, M., Accornero, N., & D’Alessio, T. (2006). Difference in sensorimotor adaptation to horizontal and vertical mirror distortions during ballistic arm movements. Human Movement Science, 25, 310–325. PubMed doi:10.1016/j.humov.2005.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catalano, J.F., & Kleiner, B.M. (1984). Distant transfer in coincident timing as a function of variability of practice. Perceptual and Motor Skills, 58(3), 851–856. doi:10.2466/pms.1984.58.3.851

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celik, O, & O’Malley, M.K. (2014). Vary slow motion: Effect of task forces on movement variability and implications for a novel skill augmentation mechanism. IEEE Robotics & Automation Magazine, 21(3), 115. doi:10.1109/MRA.2013.2275696

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colado, J.C., Garcia-Masso, X., Triplett, N.T., Calatayud, J., Flandez, J., Behm, D., & Rogers, M.E. (2014). Construct and concurrent validation of a new resistance intensity scale for exercise with Thera-Band® elastic bands. Journal of Sports Science & Medicine, 13(4), 758–766.

    • Search Google Scholar
    • Export Citation
  • Dancause, N., Ptito, A., & Levin, M.F. (2002). Error correction strategies for motor behavior after unilateral brain damage: Short-term motor learning processes. Neuropsychologia, 40(8), 1313–1323. PubMed doi:10.1016/S0028-3932(01)00218-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P.R., & Wolpert, D.M. (2005). Widespread access to predictive models in the motor system: A short review [review]. Journal of Neural Engineering, 2(3), 313–319. PubMed doi:10.1088/1741-2560/2/3/S11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrichsen, J., Hashambhoy, Y., Rane, T., & Shadmehr, R. (2005). Neural correlates of reach errors. Journal of Neuroscience, 25(43), 9919–9931. PubMed doi:10.1523/JNEUROSCI.1874-05.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., & Levin, M.F. (2009). The equilibrium-point hypothesis: Past, present and future. Advances in Experimental Medicine and Biology, 629, 699–726. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fonseca, F.S., Benda, R.N., Profeta, V.L., & Ugrinowitsch, H. (2012). Extensive practice improves adaptation to unpredictable perturbations in a sequential coincident timing task. Neuroscience Letters, 517, 123–127. doi:10.1016/j.neulet.2012.04.041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, D.W. (2015). Impedance control: Learning stability in human sensorimotor control. Paper presented at the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 1421–1424. doi:10.1109/EMBC.2015.7318636

    • Search Google Scholar
    • Export Citation
  • Franklin, D.W., Burdet, E., Keng, P.T., Osu, R., Chew, C.M., Milner, T.E., & Kawato, M. (2008). CNS learns stable accurate and efficient movements using a simple algorithm. Journal of Neuroscience, 28, 11165–11173. PubMed doi:10.1523/JNEUROSCI.3099-08.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez Castro, L.N., Hadjiosif, A.M., Hemphill, M.A., & Smith, M.A. (2014). Environmental consistency determines the rate of motor adaptation. Current Biology, 24(10), 1050–1061. PubMed doi:10.1016/j.cub.2014.03.049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haith, A.M., & Krakauer, J.W. (2014). Motor learning: The great rate debate. Current Biology, 24(10), R386–R388. PubMed doi:10.1016/j.cub.2014.03.077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C.J., Hurd, K., Jones, A., & Sprigle, S. (1999). Resistance properties of Thera-Band tubing during shoulder abduction exercise. Journal of Orthopaedic & Sports Physical Therapy, 29(7), 413–420. PubMed doi:10.2519/jospt.1999.29.7.413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyde, C., & Wilson, P.H. (2011). Dissecting online control in developmental coordination disorder: A kinematic analysis of double-step reaching. Brain and Cognition, 75(3), 232–241. PubMed doi:10.1016/j.bandc.2010.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inui, N., & Hatta, H. (2002). Asymmetric control of force and symmetric control of timing in bimanual finger tapping. Human Movement Science, 21, 131–146. PubMed doi:10.1016/S0167-9457(02)00094-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krakauer, J.W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21, 636–644. PubMed doi:10.1016/j.conb.2011.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krakauer, J.W., & Shadmehr, R. (2006). Consolidation of motor memory. Trends in Neurosciences, 29(1), 58–64. doi:10.1016/j.tins.2005.10.003

  • Lackner, J.R., & DiZio, P. (2005). Motor control and learning in altered dynamic environments. Current Opinion in Neurobiology, 15(6), 653–659. PubMed doi:10.1016/j.conb.2005.10.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2010). Stages in learning motor synergies: A view based on the equilibrium-point hypothesis. Human Movement Science, 29(5), 642–654. PubMed doi:10.1016/j.humov.2009.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malfait, N., & Ostry, D.J. (2004). Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? Journal of Neuroscience, 24(37), 8084–8089. PubMed doi:10.1523/JNEUROSCI.1742-04.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCracken, H.D., & Stelmach, G.E. (1977). A test of the schema theory of discrete motor learning. Journal of Motor Behavior, 9(3), 193–201. doi:10.1080/00222895.1977.10735109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miranda, A.B.W., Yasutomi, A.Y., Souit, C., & Forner-Cordero, A. (2012). Bioinspired mechanical design of an upper limb exoskeleton for rehabilitation and motor control assessment. Paper presented at the 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, 1776–1781. doi:10.1109/BioRob.2012.6290811

    • Search Google Scholar
    • Export Citation
  • Molteni, E., Cimolin, V., Preatoni, E., Rodano, R., Galli, M., & Bianchi, A.M. (2012). Towards a biomarker of motor adaptation: Integration of kinematic and neural factors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(3), 258–267. PubMed doi:10.1109/TNSRE.2012.2189585

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., & Shapiro, D.C. (1976). Variability of practice and transfer of training. Journal of Motor Behavior, 8(3), 233–243. doi:10.1080/00222895.1976.10735077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. PubMed doi:10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, R.M., Stegink Jansen, C.W., Hogan, H.A., & Nassif, M.D. (2001). Material properties of Thera-Band Tubing. Physical Therapy, 81(8), 1437–1445. PubMed doi:10.1093/ptj/81.8.1437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Port, N.L., Lee, D., Dassonville, P., & Georgopoulos, A.P. (1997). Manual interception of moving targets. I. Performance and movement initiation. Experimental Brain Research, 116(3), 406–420. PubMed doi:10.1007/PL00005769

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quadrado, V.H., Noriega, C., & Forner-Cordero, A. (2014). Experimental assessment of a coincident timing motor task of the arm under a passive mechanical perturbation. Paper presented at the 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, São Paulo, Brazil, 616–620. doi:10.1109/BIOROB.2014.6913846

    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A., & White, J.L. (1972). Evidence for an error detection mechanism in motor skills. Journal of Motor Behavior, 4(3), 143–153. doi:10.1080/00222895.1972.10734930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadmehr, R., & Mussa-Ivaldi, F.A. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14(5 Pt 2), 3208–3224. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadmehr, R., Smith, M.A., & Krakauer, J.W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108. doi:10.1146/annurev-neuro-060909-153135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadmehr, R., & Wise, S.P. (2005). The computational neurobiology of reaching and pointing: A foundation for motor learning. Cambridge, MA: MIT Press.

    • Search Google Scholar
    • Export Citation
  • Tee, K., Franklin, D., Kawato, M., Milner, T., & Burdet, E. (2010). Concurrent adaptation of force and impedance in the redundant muscle system. Biological Cybernetics, 102, 31–44. doi:10.1007/s00422-009-0348-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tresilian, J.R. (2004). The accuracy of interceptive action in time and space. Exercise and Sport Sciences Reviews, 32(4), 167–173. doi:10.1097/00003677-200410000-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchida, M.C., Nishida, M.M., Sampaio, R.A., Moritani, T., & Arai, H. (2016). Thera-band(®) elastic band tension: Reference values for physical activity. Journal of Physical Therapy Science, 28(4), 1266–1271. PubMed doi:10.1589/jpts.28.1266

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weeks, D.L., Aubert, M.P., Feldman, A.G., & Levin, M.F. (1996). One-trial adaptation of movement to changes in load. Journal of Neurophysiology, 75(1), 60–74. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wrisberg, C.A., & Ragsdale, M.R. (1979). Further tests of Schmidt’s schema theory: Development of a schema rule for a coincident timing task. Journal of Motor Behavior, 11(2), 159–166. doi:10.1080/00222895.1979.10735184

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 56 56 9
Full Text Views 4 4 0
PDF Downloads 3 3 0