Auditory Statistical Learning During Concurrent Physical Exercise and the Tolerance for Pitch, Tempo, and Rhythm Changes

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Previous studies suggest that statistical learning is preserved when acoustic changes are made to auditory sequences. However, statistical learning effects can vary with and without concurrent exercise. The present study examined how concurrent physical exercise influences auditory statistical learning when acoustical and temporal changes are made to auditory sequences. Participants were presented with the 500-tone sequences based on a Markov chain while cycling or resting in ignored and attended conditions. Learning effects were evaluated using a familiarity test with four types of short tone series: tone series in which stimuli were same as 500-tone sequence and three tone series in which frequencies, tempo, or rhythm was changed. We suggested that, regardless of attention, concurrent exercise interferes with tolerance in statistical learning for rhythm, rather than tempo changes. There may be specific relationships among statistical learning, rhythm perception, and motor system underlying physical exercise.

Daikoku is with the Dept. of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. Takahashi and Yasuda are with the Faculty of Health Care and Medical Sports, Teikyo Heisei University, Chiba, Japan. Tarumoto is with the Faculty of Human Care, Teikyo Heisei University, Chiba, Japan.

Address author correspondence to Tatsuya Daikoku at tdaikoku-tky@umin.org and Yuji Takahashi at y.takahashi@thu.ac.jp.
  • Alanen, R. (1995). Input enhancement and rule presentation in second language acquisition. In R. Schmidt (Ed.), Attention and awareness in foreign language learning (pp. 259302). Honolulu: University of Hawai’i Press.

    • Search Google Scholar
    • Export Citation
  • Bahlmann, J., Schubotz, R.I., & Friederici, A.D. (2008). Hierarchical artificial grammar processing engages Broca’s area. NeuroImage, 42, 525534. PubMed doi:10.1016/j.neuroimage.2008.04.249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouwer, F.L., Van Zuijen, T.L., & Honing, H. (2014). Beat processing is pre-attentive for metrically simple rhythms with clear accents: An ERP study. PLoS ONE, 9(5), 97467. PubMed doi:10.1371/journal.pone.0097467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouwer, F.L., Werner, C.M., Knetemann, M., & Honing, H. (2016). Disentangling beat perception from sequential learning and examining the influence of attention and musical abilities on ERP responses to rhythm. Neuropsychologia, 85, 8090. PubMed doi:10.1016/j.neuropsychologia.2016.02.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.K., Labban, J.D., Gapin, J.I., & Etnier, J.L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87101. doi:10.1016/j.brainres.2012.02.068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daikoku, T., Ogura, H., & Watanabe, M. (2012). The variation of hemodynamics relative to listening to consonance or dissonance during chord progression. Neurological Research, 34, 557563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daikoku, T., Takahashi, Y., Futagami, H., Tarumoto, N., & Yasuda, H. (2017). Physical fitness modulates incidental but not intentional statistical learning of simultaneous auditory sequences during concurrent physical exercise. Neurological Research, 39, 107116. doi:10.1080/01616412.2016.1273571

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daikoku, T., Yatomi, Y., & Yumoto, M. (2014). Implicit and explicit statistical learning of tone sequences across spectral shifts. Neuropsychologia, 63, 194204. PubMed doi:10.1016/j.neuropsychologia.2014.08.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daikoku, T., Yatomi, Y., & Yumoto, M. (2015). Statistical learning of music- and language-like sequences and tolerance for spectral shifts. Neurobiology of Learning and Memory, 118, 819. doi:10.1016/j.nlm.2014.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daikoku, T., Yatomi, Y., & Yumoto, M. (2016). Pitch-class distribution modulates the statistical learning of atonal chord sequences. Brain and Cognition, 108, 110. doi:10.1016/j.bandc.2016.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daikoku, T., Yatomi, Y., & Yumoto, M. (2017). Statistical learning of an auditory sequence and reorganization of acquired knowledge: A time course of word segmentation and ordering. Neuropsychologia, 95, 110. doi:10.1016/j.neuropsychologia.2016.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daikoku, T., & Yumoto, M. (2017). Single, but not dual, attention facilitates statistical learning of two concurrent auditory sequences. Scientific Reports, 7, 10108 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeKeyser, R. (2003). Implicit and explicit learning. In C.J. Doughty & M.H. Long (Eds.), Handbook of second language acquisition (pp. 313348). Oxford, MA: Blackwell.

    • Search Google Scholar
    • Export Citation
  • Ellis, R. (1993). The structural syllabus and second language acquisition. TESOL Quarterly, 27, 91113. doi:10.2307/3586953

  • Ellis, R. (2009). Implicit and explicit learning, knowledge and instruction. In R. Ellis, S. Loewen, C. Elder, R. Erlam, J. Philip, & H. Reinders (Eds.), Implicit and explicit knowledge in second language learning, testing and teaching (pp. 325). Bristol: Multilingual Matters.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • François, C., Chobert, J., Besson, M., & Schön, D. (2013). Music training for the development of speech segmentation. Cerebral Cortex, 23(9), 20382043. doi:10.1093/cercor/bhs180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujioka, T., Ross, B., & Trainor, L.J. (2015). Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. Journal of Neuroscience, 35, 1518715198. PubMed doi:10.1523/JNEUROSCI.2397-15.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujioka, T., Trainor, L.J., Large, E.W., & Ross, B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. Journal of Neuroscience, 32, 17911802. PubMed doi:10.1523/JNEUROSCI.4107-11.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klatt, D.H. (1980). Software for a cascade/parallel formant synthesizer. Journal of the Acoustical Society of America, 67(3), 971995. doi:10.1121/1.383940

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koelsch, S., Busch, T., Jentschke, S., & Rohrmeier, M. (2016). Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences. Scientific Reports, 6, 19741. PubMed doi:10.1038/srep19741

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladinig, O., Honing, H., Háden, G.P., & Winkler, I. (2009). Probing attentive and pre-attentive emergent meter in adult listeners without extensive music training. Music Perception, 26(4), 377386. doi:10.1525/mp.2009.26.4.377

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leow, R.P. (1998). Toward operationalizing the process of attention in second language acquisition: Evidence for Tomlin and Villa’s (1994) fine-grained analysis of attention. Applied Psycholinguistics, 19, 133159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markov, A.A. (1971). Extension of the limit theorems of probability theory to a sum of variables connected in a chain (Vol. 1). New York, NY: John Wiley & Sons. (Reprinted from Appendix B of Dynamic probabilistic systems, volume 1: Markov chains, by R. Howard, Ed., 2007, Mineola, NY: Dover Publications)

    • Search Google Scholar
    • Export Citation
  • Michas, I.C., & Berry, D.C. (1994). Implicit and explicit processes in a second language learning task. European Journal of Cognitive Psychology, 6, 357381. doi:10.1080/09541449408406520

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9(1), 97113. PubMed doi:10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overy, K., Nicolson, R.I., Fawcett, A.J., & Clarke, E.F. (2003). Dyslexia and music: Measuring musical timing skills. Dyslexia, 9(1), 1836. PubMed doi:10.1002/dys.233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233238. doi:10.1016/j.tics.2006.03.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robergs, R.A., & Landwehr, R. (2002). The surprising history of the “HRmax = 220-age” equation. Journal of Exercise Physiology, 5(2), 110.

    • Search Google Scholar
    • Export Citation
  • Robinson, P. (1996). Learning simple and complex second language rules under implicit, incidental, rule-search, and instructed conditions. Studies in Second Language Acquisition, 18, 2767. doi:10.1017/S0272263100014674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosa, E., & O’Neill, M.D. (1999). Explicitness, intake, and the issue of awareness: Another piece to the puzzle. Studies in Second Language Acquisition, 21, 511556. doi:10.1017/S0272263199004015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffran, J.R., Aslin, R.N., & Newport, E.L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928. PubMed doi:10.1126/science.274.5294.1926

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D.J., Arciuli, J., & Anderson, D.I. (2015). Concurrent movement impairs incidental but not intentional statistical learning. Cognitive Science, 39(5), 10811098. PubMed doi:10.1111/cogs.12180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uth, N., Sorensen, H., Overgaard, K., & Pedersen, P.K. (2004). Estimation of VO2max from the ratio between HRmax and HRrest—The heart rate ratio method. European Journal of Applied Physiology, 91(1), 111115. doi:10.1007/s00421-003-0988-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuust, P., Ostergaard, L., Pallesen, K.J., Bailey, C., & Roepstorff, A. (2009). Predictive coding of music-brain responses to rhythmic incongruity. Cortex, 45(1), 8092. PubMed doi:10.1016/j.cortex.2008.05.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, I., Háden, G.P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 24682471. PubMed doi:10.1073/pnas.0809035106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, P.H. (2002). Timing precision and rhythm in developmental dyslexia. Reading and Writing, 15, 179206. doi:10.1023/A:1013880723925

  • Yumoto, M., & Daikoku, T. (2016). Auditory system: Basic function. In S. Tobimatsu & R. Kakigi (Eds.), Clinical applications of magnetoencephalography. Tokyo, Japan: Springer.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 124 115 20
Full Text Views 4 4 0
PDF Downloads 2 2 0