The Effects of Obstacle Type and Locomotion Form on Path Selection in Rugby Players

in Motor Control
View More View Less
  • 1 Wilfrid Laurier University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

The current study investigated whether path selection of athletes specifically trained to fit through gaps is affected by the location of human obstacle and the form of locomotion. Female rugby players were instructed to walk, walk with the ball, or run with the ball along a path toward a goal while avoiding three obstacles (three vertical poles or two vertical poles and a confederate) placed halfway along the path, creating two equal apertures of 80 cm. Regardless of the form of locomotion, rugby players chose paths furthest from the confederate, suggesting that confederate location affects path selection. Furthermore, medial–lateral spatial requirements were more variable when participants were walking without the ball than while moving with the ball. Avoidance behaviors, but not path selection, appear to be impacted and minimized during sport-specific movements.

Pfaff and Cinelli are with the Dept. of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.

Address author correspondence to Michael E. Cinelli at mcinelli@wlu.ca.
  • Chang, C.-H., Wade, M.G., & Stoffregen, T.A. (2009). Perceiving affordances for aperture passage in an environment–person–person system. Journal of Motor Behavior, 41(6), 495500. PubMed doi:10.3200/35-08-095

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cinelli, M.E., Patla, A.E., & Allard, F. (2009). Behaviour and gaze analyses during a goal-directed locomotor task. Quarterly Journal of Experimental Psychology, 62(3), 483499. doi:10.1080/17470210802168583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coren, S., & Porac, C. (1982). Monocular asymmetries in visual latency as a function of sighting dominance. American Journal of Optometry and Physiological Optics, 59(12), 987990. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creem-Regehr, S.H., Gagnon, K.T., Geuss, M.N., & Stefanucci, J.K. (2013). Relating spatial perspective taking to the perception of other’s affordances: Providing a foundation for predicting the future behavior of others. Frontiers in Human Neuroscience, 7, 596. PubMed doi:10.3389/fnhum.2013.00596

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franchak, J.M., Celano, E.C., & Adolph, K.E. (2012). Perception of passage through openings cannot be explained geometric body dimensions alone. Experimental Brain Research, 223, 301310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gérin-Lajoie, M., Richards, C.L., & McFadyen, B.J. (2005). The negotiation of stationary and moving obstructions during walking: Anticipatory locomotor adaptations and preservation of personal space. Motor Control, 9(3), 242269. doi:10.1123/mcj.9.3.242

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J.J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin Company.

  • Hackney, A.L., & Cinelli, M.E. (2013). Young and older adults use body-scaled information during a non-confined aperture crossing task. Experimental Brain Research, 225(3), 419429. PubMed doi:10.1007/s00221-012-3382-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackney, A.L., Cinelli, M.E., & Frank, J.S. (2015). Does the passability of apertures change when walking through human versus pole obstacles? Acta Psychologica, 162, 6268. doi:10.1016/j.actpsy.2015.10.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackney, A.L., Vallis, L.A., & Cinelli, M.E. (2013). Action strategies of individuals during aperture crossing in nonconfined space. The Quarterly Journal of Experimental Psychology, 66(6), 11041112. PubMed doi:10.1080/17470218.2012.730532

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackney, A.L., Zakoor, A., & Cinelli, M.E. (2015). The effects of specific athletic training on path selection while running. Gait & Posture, 41(1), 323325. doi:10.1016/j.gaitpost.2014.09.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higuchi, T., Murai, G., Kijima, A., Seya, Y., Wagman, J.B., & Imanaka, K. (2011). Athletic experience influences shoulder rotations when running through apertures. Human Movement Science, 30(3), 534549. PubMed doi:10.1016/j.humov.2010.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, N., & Nishio, A. (2001). The process of adaptation to perceiving new action capabilities. Ecological Psychology, 13(1), 4969. doi:10.1207/S15326969ECO1301_3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knowles, E.S., Kreuser, B., Haas, S., Hyde, M., & Schuchart, G.E. (1976). Group size and the extension of social space boundaries. Journal of Personality and Social Psychology, 33(5), 647654. doi:10.1037/0022-3514.33.5.647

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McManus, C. (2004). Right hand, left hand: The origins of asymmetry in brains, bodies, atoms and cultures. Cambridge, MA: Harvard University Press.

    • Search Google Scholar
    • Export Citation
  • Wagman, J.B., & Taylor, K.R. (2005). Perceiving affordances for aperture crossing for the person-plus-object system. Ecological Psychology, 17(2), 105130. doi:10.1207/s15326969eco1702_3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, W.H., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 371383. PubMed doi:10.1037/0096-1523.13.3.371

    • Search Google Scholar
    • Export Citation
  • Wilmut, K., & Barnett, A.L. (2010). Locomotor adjustments when navigating through apertures. Human Movement Science, 29(2), 289298. PubMed doi:10.1016/j.humov.2010.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 118 80 3
Full Text Views 5 1 0
PDF Downloads 3 0 0