Temporal Consistency and Movement Effort of Repetitive Reaching During Continuation in Children and Adults

in Motor Control
View More View Less
  • 1 McMaster University
  • | 2 Nova Scotia Health Authority
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $79.00

1 year online subscription

USD  $105.00

Student 2 year online subscription

USD  $150.00

2 year online subscription

USD  $200.00

The ability to match one’s movements to an external beat and maintain that rhythm in the absence of the beat suggests sophisticated, well-developed neural control. Children (aged 5–10 years) were compared with adults (aged 18–30 years) during a repetitive reaching task to determine development of this control. Children as young as 5 years exhibited this control. The mean rate of reaching did not differ between groups nor did it differ during the two phases, suggesting an overall ability to internalize and continuously repeat a given pace. Children aged 5–8 years were significantly more variable than children aged 9–10 years and adults, likely attributable to variability in central control processes. We found a possible transition period of temporal control. Children aged 9–10 years begin to exhibit more adult-like levels of variability with respect to temporal consistency and movement effort.

Galea and Pierrynowski are with the School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada. Traynor is with the Centre for Clinical Research, Nova Scotia Health Authority, Halifax, Ontario, Canada.

Address author correspondence to Victoria Galea at galeav@mcmaster.ca.
  • Adams, I.L.J., Lust, J.M., Wilson, P.H., & Steenbergen, B. (2014). Compromised motor control in children with DCD: A deficit in the internal model?—A systematic review. Neuroscience & Biobehavioral Reviews, 47, 225244. PubMed doi:10.1016/j.neubiorev.2014.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasubramaniam, R., Wing, A.M., & Daffertshofer, A. (2004). Keeping with the beat: Movement trajectories contribute to movement timing. Experimental Brain Research, 159(1), 129134. PubMed

    • Search Google Scholar
    • Export Citation
  • Bo, J., Bastian, A.J., Kagerer, F.A., Contreras-Vidal, J.L., & Clark, J.E. (2008). Temporal variability in continuous versus discontinuous drawing for children with Developmental Coordination Disorder. Neuroscience Letters, 431(3), 215220. PubMed doi:10.1016/j.neulet.2007.11.040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnod, Y., Baraduc, P., Battaglia-Mayer, A., Guigon, E., Koechlin, E., Ferraina, S., … Caminiti, R. (1999). Parieto-frontal coding of reaching: An integrated framework. Experimental Brain Research, 129(3), 325346. PubMed doi:10.1007/s002210050902

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, C., Jones, M.R., & Baruch, C. (2000). The development of rhythmic attending in auditory sequences: Attunement, referent period, focal attending. Cognition, 77(3), 251288. PubMed doi:10.1016/S0010-0277(00)00106-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drewing, K., Aschersleben, G., & Li, S.-C. (2006). Sensorimotor synchronization across the life span. International Journal of Behavioral Development, 30(3), 280287. doi:10.1177/0165025406066764

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghez, C., & Thach, W.T. (2000). The cerebellum. In E.R. Kandel, J.H. Schwartz, & T.M. Jessell (Eds.), Principles of neural science (4th ed., pp. 832853). New York, NY: McGraw-Hill.

    • Search Google Scholar
    • Export Citation
  • Greene, L.S., & Williams, H.G. (1993). Age-related differences in timing control of repetitive movement: Application of the Wing-Kristofferson model. Research Quarterly for Exercise and Sport, 64(1), 3238. PubMed doi:10.1080/02701367.1993.10608776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivry, R.B., & Hazeltine, R.E. (1995). Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 318. PubMed

    • Search Google Scholar
    • Export Citation
  • Ivry, R.B., & Keele, S.W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1(1), 136152. doi:10.1162/jocn.1989.1.2.136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivry, R.B., Keele, S.W., & Diener, H.C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research, 73(1), 167180. PubMed doi:10.1007/BF00279670

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivry, R.B., Spencer, R.M., Zelaznik, H.N., & Diedrichsen, J. (2002). The cerebellum and event timing. Annals of the New York Academy of Sciences, 978, 302317. PubMed doi:10.1111/j.1749-6632.2002.tb07576.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koomar, J., Burpee, J.D., DeJean, V., Frick, S., Kawar, M.J., & Fischer, D.M. (2001). Theoretical and clinical perspectives on the interactive metronome: A view from occupational therapy practice. The American Journal of Occupational Therapy, 55(2), 163166. PubMed doi:10.5014/ajot.55.2.163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, P., & Miall, R.C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250255. PubMed doi:10.1016/S0959-4388(03)00036-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meck, W.H., Penney, T.B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18(2), 145152. PubMed doi:10.1016/j.conb.2008.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noulhiane, M., Pouthas, V., Hasboun, D., Baulac, M., & Samson, S. (2007). Role of the medial temporal lobe in time estimation in the range of minutes. Neuroreport, 18(10), 10351038. PubMed doi:10.1097/WNR.0b013e3281668be1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulignan, Y., MacKenzie, C., Marteniuk, R., & Jeannerod, M. (1990). The coupling of arm and finger movements during prehension. Experimental Brain Research, 79(2), 431435. PubMed doi:10.1007/BF00608255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrynowski, M.R. (2009). Measurement properties of simple biomechanical measures of walking effort. Computational and Mathematical Methods in Medicine, 10(3), 219228. doi:10.1080/17486700802397960

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Repp, B.H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969992. PubMed doi:10.3758/BF03206433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Repp, B.H., & Su, Y.H. (2013). Sensorimotor synchronization: A review on resent research (2006–2012). Psychonomic Bulletin & Review, 20, 403452. PubMed doi:10.3758/s13423-012-0371-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenbusch, M.H., & Gardner, D.B. (1968). Reproduction of visual and auditory rhythm patterns by children. Perceptual and Motor Skills, 26(Suppl. 3), 12711276. doi:10.2466/pms.1968.26.3c.1271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salman, M.S. (2002). The cerebellum: It’s about time! But timing is not everything—New insights into the role of the cerebellum in timing motor and cognitive tasks. Journal of Child Neurology, 17(1), 19. PubMed doi:10.1177/088307380201700101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, R. (1997). Developmental characteristics of temporal control of movement in preschool and school children of different ages. Perceptual and Motor Skills, 85(Suppl. 3), 14551467. doi:10.2466/pms.1997.85.3f.1455

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneiberg, S., Sveistrup, H., McFadyen, B., McKinley, P., & Levin, M.F. (2002). The development of coordination for reach-to-grasp movements. Experimental Brain Research, 146, 142154. PubMed doi:10.1007/s00221-002-1156-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulze, H.H., & Vorberg, D. (2002). Linear phase correction models for synchronization: Parameter identification and estimation of parameters. Brain and Cognition, 48(1), 8097. PubMed doi:10.1006/brcg.2001.1305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semjen, A., Schulze, H.H., & Vorberg, D. (2000). Timing precision in continuation and synchronization tapping. Psychological Research, 63(2), 137147. PubMed doi:10.1007/PL00008172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serrien, D. (2008). The neural dynamics of timed motor tasks: Evidence from a synchronization–continuation paradigm. European Journal of Neuroscience, 27(6), 15531560. PubMed doi:10.1111/j.1460-9568.2008.06110.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaffer, L.H. (1982). Rhythm and timing in skill. Psychological Review, 89(2), 109122. PubMed doi:10.1037/0033-295X.89.2.109

  • Spencer, R.M., Ivry, R.B., & Zelaznik, H.N. (2005). Role of the cerebellum in movements: Control of timing or movement transitions? Experimental Brain Research, 161(3), 383396. PubMed doi:10.1007/s00221-004-2088-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, M., Johnels, J.A., Lindh, J., Laakso, K., & Hartelius, L. (2016). Syllable repetition vs. finger tapping: Aspects of motor timing in 100 healthy adults. Motor Control, 20(3), 233254. PubMed doi:10.1123/mc.2014-0068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thelen, E. (1991). Timing in motor development as emergent process and product. In J. Fagard & P.H. Wolff (Eds.), The development of timing control and temporal organization in coordinated action. Amsterdam, The Netherlands: North-Holland.

    • Search Google Scholar
    • Export Citation
  • Traynor, R., Galea, V., & Pierrynowski, M.R. (2012). The development of rhythm regularity, neuromuscular strategies and movement smoothness during repetitive reaching in typically developing children. Journal of Electromyography and Kinesiology, 22(2), 259265. PubMed doi:10.1016/j.jelekin.2011.11.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviani, P., & Laissard, G. (1991). Timing control in motor sequences. In J. Fagard & P.H. Wolff (Eds.), The development of timing control and temporal organization in coordinated action. Amsterdam, The Netherlands: North-Holland.

    • Search Google Scholar
    • Export Citation
  • von Hofsten, C., & Fazel-Zandy, S. (1984). Development of visually guided hand orientation in reaching. Journal of Experimental Child Psychology, 38(2), 208219. PubMed doi:10.1016/0022-0965(84)90122-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitall, J., Chang, T.Y., Horn, C.L., Jung-Potter, J., McMenamin, S., Wilms-Floet, A., & Clark, J.E. (2008). Auditory-motor coupling of bilateral finger tapping in children with and without DCD compared to adults. Human Movement Science, 27(6), 914931. PubMed doi:10.1016/j.humov.2007.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, H.G. (2002). Motor control in children with developmental coordination disorder. In S.A. Cermak & D. Larkin (Eds.), Developmental coordination disorder. Albany, NY: Delmar.

    • Search Google Scholar
    • Export Citation
  • Williams, H.G., Woollacott, M.H., & Ivry, R. (1992). Timing and motor control in clumsy children. Journal of Motor Behavior, 24(2), 165172. PubMed doi:10.1080/00222895.1992.9941612

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A.M. (2002). Voluntary timing and brain function: An information processing approach. Brain and Cognition, 48(1), 730. PubMed doi:10.1006/brcg.2001.1301

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A.M., & Kristofferson, A.B. (1973a). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14(1), 512. doi:10.3758/BF03198607

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A.M., & Kristofferson, A.B. (1973b). The timing of inter-response intervals. Perception & Psychophysics, 13(1), 455460. doi:10.3758/BF03205802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zackowski, K.M., Thach, W.T., Jr., & Bastian, A.J. (2002). Cerebellar subjects show impaired coupling of reach and grasp movements. Experimental Brain Research, 146(4), 511522. PubMed doi:10.1007/s00221-002-1191-9

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 447 191 7
Full Text Views 5 0 0
PDF Downloads 3 0 0