Which Measures of Online Control Are Least Sensitive to Offline Processes?

in Motor Control

A major challenge to the measurement of online control is the contamination by offline, planning-based processes. The current study examined the sensitivity of four measures of online control to offline changes in reaching performance induced by prism adaptation and terminal feedback. These measures included the squared Z scores (Z2) of correlations of limb position at 75% movement time versus movement end, variable error, time after peak velocity, and a frequency-domain analysis (pPower). The results indicated that variable error and time after peak velocity were sensitive to the prism adaptation. Furthermore, only the Z2 values were biased by the terminal feedback. Ultimately, the current study has demonstrated the sensitivity of limb kinematic measures to offline control processes and that pPower analyses may yield the most suitable measure of online control.

de Grosbois and Tremblay are with the Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada; and also with the Centre for Motor Control, University of Toronto, Toronto, Ontario, Canada.

Address author correspondence to Luc Tremblay at luc.tremblay@utoronto.ca.
  • Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37, 379384. PubMed doi:10.3758/BF03192707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernier, P.-M., Chua, R., & Franks, I.M. (2005). Is proprioception calibrated during visually guided movements? Experimental Brain Research, 167(2), 292296. PubMed doi:10.1007/s00221-005-0063-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernier, P.-M., Chua, R., Franks, I.M., & Khan, M.A. (2006). Determinants of offline processing of visual information for the control of reaching movements. Journal of Motor Behavior, 38(5), 331338. PubMed doi:10.3200/JMBR.38.5.331-338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlton, L.G. (1981). Processing visual feedback information for movement control. Journal of Experimental Psychology: Human Perception and Performance, 7(5), 10191030. PubMed doi:10.1037/0096-1523.7.5.1019

    • Search Google Scholar
    • Export Citation
  • Chua, R., & Elliott, D. (1993). Visual regulation of manual aiming. Human Movement Science, 12(14), 365401. doi:10.1016/0167-9457(93)90026-L

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, B.L., & Lyon, I.N. (2000). Voluntary modification of automatic arm movements evoked by motion of a visual target. Experimental Brain Research, 130(2), 159168. PubMed doi:10.1007/s002219900218

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Grosbois, J., & Tremblay, L. (2016). Quantifying online visuomotor feedback utilization in the frequency domain. Behavior Research Methods, 48(4), 16531666. PubMed doi:10.3758/s13428-015-0682-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Grosbois, J., & Tremblay, L. (2017). Distinct and flexible rates of online control. Psychological Research. doi:10.1007/s00426-017-0888-0

    • Search Google Scholar
    • Export Citation
  • Elliott, D., Binsted, G., & Heath, M. (1999). The control of goal-directed limb movements: Correcting errors in the trajectory. Human Movement Science, 18(2–3), 121136. doi:10.1016/S0167-9457(99)00004-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., Carson, R., Goodman, D., & Chua, R. (1991). Discrete vs. continuous visual control of manual aiming. Human Movement Science, 10, 393418. doi:10.1016/0167-9457(91)90013-N

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., & Hansen, S. (2010). Visual regulation of manual aiming: A comparison of methods. Behavior Research Methods, 42(4), 10871095. PubMed doi:10.3758/BRM.42.4.1087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., Hansen, S., Grierson, L.E.M., Lyons, J., Bennett, S.J., & Hayes, S.J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 10231044. PubMed doi:10.1037/a0020958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., Hansen, S., Mendoza, J., & Tremblay, L. (2004). Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. Journal of Motor Behavior, 36(3), 339351. PubMed doi:10.3200/JMBR.36.3.339-351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., & Madalena, J., (1987). The influence of premovement visual information on manual aiming. The Quarterly Journal of Experimental Psychology Section A, 39(3), 541559. doi:10.1080/14640748708401802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381391. doi:10.1037/h0055392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, V.H., Hesse, C., & Kollath, S. (2009). Visual illusions, delayed grasping, and memory: No shift from dorsal to ventral control. Neuropsychologia, 47(6), 15181531. PubMed doi:10.1016/j.neuropsychologia.2008.08.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gosselin-Kessiby, N., Messier, J., & Kalaska, J.F. (2008). Evidence for automatic online adjustments of hand orientation during natural reaching movements to stationary targets. Journal of Neurophysiology, 99, 16531671. PubMed doi:10.1152/jn.00980.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, S., Tremblay, L., & Elliott, D. (2005). Part and whole practice: Chunking and online control in the acquisition of a serial motor task. Research Quarterly for Exercise and Sport, 76(1), 6066. doi:10.1080/02701367.2005.10599262

    • Search Google Scholar
    • Export Citation
  • Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9(3), 281309. PubMed doi:10.1123/mcj.9.3.281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., Westwood, D.A., & Binsted, G. (2004). The control of memory-guided reaching movements in peripersonal space. Motor Control, 8, 76106. PubMed doi:10.1123/mcj.8.1.76

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuer, H., & Hegele, M. (2008). Adaptation to a nonlinear visuomotor amplitude transformation with continuous and terminal visual feedback. Journal of Motor Behavior, 40(5), 368379. PubMed doi:10.3200/JMBR.40.5.368-379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keele, S.W., & Posner, M.I. (1968). Processing of visual feedback in rapid aiming movements. Journal of Experimental Psychology, 77(1), 155158. PubMed doi:10.1037/h0025754

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, M.A., Elliott, D., Coull, J., Chau, R., & Lyons, J. (2002). Optimal control strategies under different feedback schedules: Kinematic evidence. Journal of Motor Behavior, 34(1), 4557. PubMed doi:10.1080/00222890209601930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, M.A., & Franks, I.M. (2003). Online versus offline processing of visual feedback in the production of component submovements. Journal of Motor Behavior, 35(3), 285295. PubMed doi:10.1080/00222890309602141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, M.A., Franks, I.M., Elliott, D., Lawrence, G.P., Chua, R., Bernier, P., … Weeks, D.J. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience & Biobehavioral Reviews, 30, 11061121. PubMed doi:10.1016/j.neubiorev.2006.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, M.A., Franks, I.M., & Goodman, D. (1998). The effect of practice on the control of rapid aiming movements: Evidence for an interdependency between programming and feedback processing. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 52(2), 425444. doi:10.1080/713755756

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, M.A. (2013). ez: Easy analysis and visualization of factorial experiments. R package version 4.2-2. Retrieved from http://CRAN.R-project.org/package=ez

    • Search Google Scholar
    • Export Citation
  • Messier, J., & Kalaska, J.F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research, 125(2), 139152. doi:10.1007/s002210050669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miall, R.C. (1996). Task-dependent changes in visual feedback control: A frequency analysis of human manual tracking. Journal of Motor Behavior, 28(2), 125135. PubMed doi:10.1080/00222895.1996.9941739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milgram, P. (1987). A spectacle-mounted liquid-crystal tachistoscope. Behavior Research Methods, Instruments, & Computers, 19(5), 449456. doi:10.3758/BF03205613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neurospycholigia, 9 , 97113. doi:10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychological Methods, 8, 434447. PubMed doi:10.1037/1082-989X.8.4.434

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plamondon, R., & Alimi, A.M. (1997). Speed/accuracy trade-offs in target-directed movements. Behavioral and Brain Sciences, 20(2), 279303. PubMed doi:10.1017/S0140525X97001441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Development Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • Redding, G.M., & Wallace, B. (1997). Prism adaptation during target pointing from visible and nonvisible starting locations. Journal of Motor Behavior, 29(2), 119130. PubMed doi:10.1080/00222899709600827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redding, G.M., & Wallace, B. (2008). Intermanual transfer of prism adaptation. Journal of Motor Behavior, 40(3), 246264. PubMed doi:10.3200/JMBR.40.3.246-264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soechting, J.F. (1984). Effect of target size on spatial and temporal characteristics of a pointing movement in man. Experimental Brain Research, 54, 121132. doi:10.1007/BF00235824

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sosnoff, J.J., & Newell, K.M. (2005). Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Perception & Psychophysics, 67(2), 335344. PubMed doi:10.3758/BF03206496

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, L., Hansen, S., Kennedy, A., & Cheng, D.T. (2013). The utility of vision during action: Multiple visuomotor processes? Journal of Motor Behavior, 45(2), 9199. PubMed doi:10.1080/00222895.2012.747483

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tresilian, J.R., Stelmach, G.E., & Adler, C.H. (1997). Stability of reach-to-grasp movement patterns in Parkinson’s disease. Brain, 120, 20932111. PubMed doi:10.1093/brain/120.11.2093

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Donkelaar, P., & Franks, I.M. (1991). Preprogramming vs. on-line control in simple movement sequences. Acta Psychologica, 77(1), 119. doi:10.1016/0001-6918(91)90061-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, N., Philbin, D., Worden, A., & Smelcer, J.B. (1997). A program for parsing mouse movements into component submovements. Behavior Research Methods, 29(3), 456460. doi:10.3758/BF03200599

    • Search Google Scholar
    • Export Citation
  • Westwood, D.A., & Goodale, M.A. (2003). Perceptual illusion and the real-time control of action. Spatial Vision, 16(3–4), 243254. PubMed doi:10.1163/156856803322467518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodworth, R.S. (1899). The accuracy of voluntary movement. Psychological Review, 3(2), 1114. doi:10.1037/h0092992

  • Zelaznik, H.N., Hawkins, B., & Kisselburgh, L. (1983). Rapid visual feedback processing in single-aiming movements. Journal of Motor Behavior, 15(3), 217236. PubMed doi:10.1080/00222895.1983.10735298

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 53 41 1
Full Text Views 0 0 0
PDF Downloads 0 0 0