Brain Activity on Observation of Another Person’s Action: A Magnetoencephalographic Study

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Brain activity was recorded using a whole-head magnetoencephalography system followed by coherence analysis to assess neural connectivity in 10 healthy right-handed adults to clarify differences in neural connectivity in brain regions during action observation from several perspectives. The subjects were instructed to observe and memorize or imitate the hand action from a first-person or second-person visual perspective. The brain activity in coherence was modified among frontal and central, sensorimotor, and mirror neuron system-related regions based on the visual perspectives of finger movements. The regional activity in coherence changed similarly under the imitation and observation tasks compared with the condition of observing static hand figures. The information from different visual perspectives of body movements was processed in the frontal–central regions related to sensorimotor processes and partially in mirror neuron system.

Mizuno, Kawamura, and Hoshiyama are with the Dept. of Occupational Therapy, Graduate School of Medicine, School of Health Sciences, Nagoya University, Nagoya, Japan. Hoshiyama is also with the Brain & Mind Research Center, Nagoya University, Nagoya, Japan.

Address author correspondence to Minoru Hoshiyama at hosiyama@met.nagoya-u.ac.jp.
  • Agnew, Z.K., Wise, R.J., & Leech, R. (2012). Dissociating object directed and non-object directed action in the human mirror system; implications for theories of motor simulation. PLoS ONE, 7(4), 32517. PubMed doi:10.1371/journal.pone.0032517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Athanasiou, A., Lithari, C., Kalogianni, K., Manousos, A.K., & Panagiotis, D.B. (2012). Source detection and functional connectivity of the sensorimotor cortex during actual and imaginary limb movement: A preliminary study on the implementation of eConnectome in motor imagery protocols. Advances in Human-Computer Interaction, 2012, 127627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avikainen, S., Forss, N., & Hari, R. (2002). Modulated activation of the human SI and SII cortices during observation of hand actions. NeuroImage, 15(3), 640646. PubMed doi:10.1006/nimg.2001.1029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2006). Lateralization of the human mirror neuron system. The Journal of Neuroscience, 26(11), 29642970. PubMed doi:10.1523/JNEUROSCI.2921-05.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardouille, T., & Boe, S. (2012). State-related changes in MEG functional connectivity reveal the task-positive sensorimotor network. PLoS ONE, 7(10), e48682. PubMed doi:10.1371/journal.pone.0048682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blakemore, S.J., Bristow, D., Bird, G., Frith, C., & Ward, J. (2005). Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain, 128(7), 15711583. doi:10.1093/brain/awh500

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buccino, G., Binkofski, F., Fink, G.R., Fadiga, L., Fogassi, L., Gallese, V., … Freund, H.-J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400404. PubMed doi:10.1111/j.1460-9568.2001.01385.x

    • Search Google Scholar
    • Export Citation
  • Buccino, G., Binkofski, F., & Riggio, L. (2004). The mirror neuron system and action recognition. Brain & Language, 89(2), 370376. PubMed doi:10.1016/S0093-934X(03)00356-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caetano, G., Jousmäki, V., & Hari, R. (2007). Actor’s and observer’s primary motor cortices stabilize similarly after seen or heard motor actions. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 90589062. PubMed doi:10.1073/pnas.0702453104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 115. PubMed doi:10.1016/j.neuroimage.2010.06.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drew, A.R., Quandt, L.C., & Marshall, P.J. (2015). Visual influences on sensorimotor EEG responses during observation of hand actions. Brain Research, 1597, 119128. PubMed doi:10.1016/j.brainres.2014.11.048

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 26082611. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., & Collins, D.L. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47(Suppl. 1), S102. doi:10.1016/S1053-8119(09)70884-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., & Franz, E.A. (2014). Viewer perspective in the mirroring of actions. Experimental Brain Research, 232(11), 36653674. PubMed doi:10.1007/s00221-014-4042-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609. doi:10.1093/brain/119.2.593

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Q., Duan, X., & Chen, H. (2011). Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. NeuroImage, 54(2), 12801288. PubMed doi:10.1016/j.neuroimage.2010.08.071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hämäläinen, M.S., & Ilmoniemi, R.J. (1994). Interpreting magnetic fields of the brain: Minimum norm estimates. Medical & Biological Engineering & Computing, 32(1), 3542. doi:10.1007/BF02512476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942951. PubMed doi:10.1038/nrn2024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, P.L., Meltzoff, A.N., & Decety, J. (2006). Neural circuits involved in imitation and perspective-taking. NeuroImage, 31(1), 429439. PubMed doi:10.1016/j.neuroimage.2005.11.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonas, M., Siebner, H.R., Biermann-Ruben, K., Kessler, K., Bäumer, T., Büchel, C., … Münchau, A. (2007). Do simple intransitive finger movements consistently activate frontoparietal mirror neuron areas in humans? NeuroImage, 36(Suppl. 2), T4453. doi:10.1016/j.neuroimage.2007.03.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lounasmaa, O.V., Hämäläinen, M., Hari, R., & Salmelin, R. (1996). Information processing in the human brain: Magnetoencephalographic approach. Proceedings of the National Academy of Sciences of the United States of America, 93(17), 88098815. PubMed doi:10.1073/pnas.93.17.8809

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macuga, K.L., & Frey, S.H. (2011). Selective responses in right inferior frontal and supramarginal gyri differentiate between observed movements of oneself vs. another. Neuropsychologia, 49(5), 12021207. PubMed doi:10.1016/j.neuropsychologia.2011.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meltzoff, A.N., & Moore, M.K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 7578. PubMed doi:10.1126/science.198.4312.75

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesulam, M.-M. (1998). From sensation to perception. Brain, 121, 10131052. PubMed doi:10.1093/brain/121.6.1013

  • Montgomery, K.J., Isenberg, N., & Haxby, J.V. (2007). Communicative hand gestures and object-directed hand movements activated the mirror neuron system. Social Cognitive and Affective Neuroscience, 2(2), 114122. PubMed doi:10.1093/scan/nsm004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishitani, N., & Hari, R. (2000). Temporal dynamics of cortical representation for action. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 913918. PubMed doi:10.1073/pnas.97.2.913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obayashi, Y., Uemura, J., & Hoshiyama, M. (2017). Functional inter-cortical connectivity among motor-related cortices during motor imagery: A magnetoencephalographic study. Somatosensory & Motor Research, 34(1), 18. PubMed doi:10.1080/08990220.2016.1257985

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113. PubMed doi:10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pineda, J.A. (2005). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing”. Brain Research Reviews, 50(1), 5768. doi:10.1016/j.brainresrev.2005.04.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141. PubMed doi:10.1016/0926-6410(95)00038-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stavrinou, M.L., Moraru, L., Cimponeriu, L., Della Penna, S., & Bezerianos, A. (2007). Evaluation of cortical connectivity during real and imagined rhythmic finger tapping. Brain Topography, 19(3), 137145. PubMed doi:10.1007/s10548-007-0020-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., & Leahy, R.M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 879716. doi:10.1155/2011/879716

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tesche, C.D., Uusitalo, M.A., Ilmoniemi, R.J., Huotilainen, M., Kajola, M., & Salonen, O. (1995). Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalography and Clinical Neurophysiology, 95(3), 189200. PubMed doi:10.1016/0013-4694(95)00064-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umiltà, M.A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I know what you are doing: A neurophysiological study. Neuron, 31(1), 155165. doi:10.1016/S0896-6273(01)00337-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uusitalo, M.A., & Ilmoniemi, R.J. (1997). Signal-space projection method for separating MEG or EEG into components. Medical & Biological Engineering & Computing, 35(2), 135140. PubMed doi:10.1007/BF02534144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Elk, M. (2014). The left inferior parietal lobe represents stored hand-postures for object use and action prediction. Frontiers in Psychology, 5, 112. doi:10.3389/fpsyg.2014.00333

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheaton, K.J., Thompson, J.C., Syngeniotis, A., Abbott, D.F., & Puce, A. (2004). Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. NeuroImage, 22(1), 277288. PubMed doi:10.1016/j.neuroimage.2003.12.043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: A review of influential factors. Medical Education, 44(1), 7584. PubMed doi:10.1111/j.1365-2923.2009.03421.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, S., Liu, Y., & Ding, M. (2016). Amplitude of sensorimotor mu rhythm is correlated with BOLD from multiple brain regions: A simultaneous EEG-fMRI study. Frontiers in Human Neuroscience, 10, 364. doi:10.3389/fnhum.2016.00364

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 133 110 7
Full Text Views 9 6 0
PDF Downloads 5 5 0