Kinetic Analysis of Fingers During Aimed Throwing

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

This study had two objectives: (a) revealing the difference in finger segments between the conventional and finger models during aimed throwing and (b) examining the central nervous system’s timing control between the wrist torque and finger torque. Participants were seven baseball players. Finger kinetics was calculated by an inverse dynamics method. In the conventional model, wrist flexion torque was smaller than that in the finger model because of the error in ball position approximation. The maximal correlation coefficient between the wrist torque and finger torque was high (r = .85 ± .10), and the time lag at maximal correlation coefficient was small (t = 0.36 ± 3.02 ms). The small timing delay between the wrist torque and finger torque greatly influenced ball trajectory. We conclude that, to stabilize release timing, the central nervous system synchronized the wrist torque and finger torque by feed-forward adjustments.

Shibata, Yoshioka, and Fukashiro are with the Dept. of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. Shibata is also with the Research & Development Dept., Mizuno Corporation, Suminoe-ku, Osaka, Japan. Inaba is with the Dept. of Sports Science, Japan Institute of Sports Sciences, Kita-ku, Tokyo, Japan.

Address author correspondence to Shohei Shibata at shibasho73@gmail.com.
  • Ajiri, T. (1981). A comparative study on muscle fiber organization in human hand muscles. Journal of the Showa Medical Association, 41(6), 693–706. doi:10.14930/jsma1939.41.693

    • Search Google Scholar
    • Export Citation
  • Alonso, F.J., Del Castillo, J.M., & Pintado, P. (2005). Application of singular spectrum analysis to the smoothing of raw kinematic signals. Journal of Biomechanics, 38, 1085–1092. PubMed doi:10.1016/j.jbiomech.2004.05.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S.S., Paclet, F., Latash, L.M., & Zatsiorsky, M.V. (2013). Grip-force modulation in multi-finger prehension during wrist flexion and extension. Experimental Brain Research, 227, 509–522. PubMed doi:10.1007/s00221-013-3527-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1967). The coordination and regulation of movement. Oxford, UK: Pergamon.

  • Bernstein, N.A. (1996). Essay 6: On exercises and motor skill. In M.L. Latash& M.T. Turvey (Eds.), Dexterity and its development (pp. 171–205). Hillsdale, NJ: Erlbaum.

    • Search Google Scholar
    • Export Citation
  • Chowdhary, A.G., & Challis, J.H. (1999). Timing accuracy in human throwing. Journal of Theoretical Biology, 201, 219–229. PubMed doi:10.1006/jtbi.1999.1024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordo, P., Carlton, L., Bevan, L., Carlton, M., & Kerr, G.K. (1994). Proprioceptive coordination of movement sequences: Role of velocity and position information. Journal of Neurophysiology, 71, 1848–1861. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debicki, B.D., Gribble, L.P., Watts, S., & Hore, J. (2011). Wrist muscle activation, interaction torque and mechanical properties in unskilled throws of different speeds. Experimental Brain Research, 208, 115–125. PubMed doi:10.1007/s00221-010-2465-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. Journal of Biomechanics, 29, 1223–1230. PubMed doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, B., Grove, J.R., Gibson, B., & Thurston, B. (1986). A three-dimensional cinematographic analysis of the fastball and curveball pitches in baseball. International Journal of Sport Biomechanics, 2, 20–28. doi:10.1123/ijsb.2.1.20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltner, M.E. (1989). Three-dimensional interactions in a two-segment kinetic chain. Part II: Application to the throwing arm in baseball pitching. International Journal of Sport Biomechanics, 5, 420–450. doi:10.1123/ijsb.5.4.420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goto, K., Yamamoto, K., & Kamiyoshi, K. (1971). Shokai Rikigaku Ensyu (p. 186). Tokyo, Japan: Kyoritsu Shuppan Co., Ltd.

  • Hanavan, E.P., Jr. (1964). A mathematical model of the human body (No. AFIT-GA-PHYS-64-3). Wright-Patterson AFB, OH: Air Force Aerospace Medical Research Lab.

    • Search Google Scholar
    • Export Citation
  • Hirashima, M., Kadota, H., Sakurai, S., Kudo, K., & Ohtsuki, T. (2002). Sequential muscle activity and its functional role in the upper extremity and trunk during overarm throwing. Journal of Sports Sciences, 20, 301–310. doi:10.1080/026404102753576071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirashima, M., Kudo, K., & Ohtsuki, T. (2003). Utilization and compensation of interaction torques during ball-throwing movements. Journal of Neurophysiology, 89, 1784–1796. doi:10.1152/jn.00674.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirashima, M., Kudo, K., Watarai, K., & Ohtsuki, T. (2007). Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players. Journal of Neurophysiology, 97, 680–691. PubMed doi:10.1152/jn.00348.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirashima, M., Yamane, K., Nakamura, Y., & Ohtsuki, T. (2008). Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis. Journal of Biomechanics, 41, 2874–2883. PubMed doi:10.1016/j.jbiomech.2008.06.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hore, J., & Watts, S. (2011). Skilled throwers use physics to time ball release to the nearest millisecond. Journal of Neurophysiology, 106, 2024–2033. PubMed doi:10.1152/jn.00059.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hore, J., Watts, S., Leschuk, M., & MacDougall, A. (2001). Control of finger grip forces in overarm throws made by skilled throwers. Journal of Neurophysiology, 86, 2678–2689. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hore, J., Watts, S., & Martin, J. (1996). Finger flexion does not contribution to ball speed in overarm throws. Journal of Sports Sciences, 14, 335–342. PubMed doi:10.1080/02640419608727719

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hore, J., Watts, S., & Tweed, D. (1996). Errors in the control of joint rotations associated with inaccuracies in overarm throws. Journal of Neurophysiology, 75, 1013–1025. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, H., & Loosch, E. (1999). Functional variability and an equifinal path of movement during targeted throwing. Journal of Human Movement Studies, 36, 103–126.

    • Search Google Scholar
    • Export Citation
  • Mungiole, M., & Martin, E.P. (1990). Estimating segment inertial properties: Comparison of magnetic resonance imaging with existing methods. Journal of Biomechanics, 23, 1039–1046. PubMed doi:10.1016/0021-9290(90)90319-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasu, D., Matsuo, T., & Kadota, K. (2014). Two types of motor strategy for accurate dart throwing. PLoS ONE, 9(2), 88536. doi:10.1371/journal.pone.0088536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., & Corcos, D.M. (1993). Issue in variability and motor control. In K.M. Newell& D.M. Corcos (Eds.), Variability and motor control (pp. 1–12). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Nissen, W.C., Westwell, M., Ounpuu, S., Patel, M., Tate, P.J., Pierz, K., … Bicos, J. (2007). Adolescent baseball pitching technique: A detailed three-dimensional biomechanical analysis. Medicine & Science in Sports & Exercise, 39, 1347–1357. PubMed doi:10.1249/mss.0b013e318064c88e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pappas, A.M., Zawacki, R.M., & Sullivan, T.J. (1985). Biomechanics of baseball pitching: A preliminary report. American Journal of Sports Medicine, 13, 216–222. PubMed doi:10.1177/036354658501300402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnam, C.A. (1991). A segment interaction analysis of proximal-to-distal sequential segment motion patterns. Medicine & Science in Sports & Exercise, 23, 130–144. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakurai, S., Ikegami, Y., Okamoto, A., Yabe, K., & Toyoshima, S. (1993). A three-dimensional cinematographic analysis of upper limb movement during fastball and curveball baseball pitches. Journal of Applied Biomechanics, 9, 47–65. doi:10.1123/jab.9.1.47

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomito, J.M., Garibay, J.E., Woods, R.J., Ounpuu, S., & Nissen, W.C. (2014). Evaluation of wrist and forearm motion in college-aged baseball pitchers. Sports Biomechanics, 13, 320–331. PubMed doi:10.1080/14763141.2014.955523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teratani, T., Ito, J., Ito, R., Inokuchi, S., & Matsuyama, Y. (1985). Studies on the myofibrous organization of upper extremity muscles in man—Comparison of the function of upper extremity in man and monkey. Journal of the Showa Medical Association, 45, 61–70.

    • Search Google Scholar
    • Export Citation
  • Urbin, A.M., Stodden, D., Boros, R., & Shannon, D. (2012). Examining impulse-variability in overarm throwing. Motor Control, 16, 19–30. PubMed doi:10.1123/mcj.16.1.19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, S., Pessotto, I., & Hore, J. (2004). A simple rule for controlling overarm throws to different targets. Experimental Brain Research, 159, 329–339. PubMed doi:10.1007/s00221-004-1957-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werremeyer, M.M., & Cole, J.K. (1997). Wrist action affects precision grip force. Journal of Neurophysiology, 78, 271–280. PubMed

  • Winter, D.A. (2005). Biomechanics and motor control of human movement (3rd ed.). Hoboken, NJ: John Wiley & Sons, Inc.

  • Yokoi, T., Takahashi, A., Okada, H., Ohyama, K.B., & Muraoka, M. (1998). Is the selection of body segment inertia parameters critical to the results of kinematic and kinetic analysis of human movement? Anthropological Science, 106, 371–383. doi:10.1537/ase.106.371

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 104 104 11
Full Text Views 1 1 0
PDF Downloads 1 1 0