Influence of Music Style and Rate on Repetitive Finger Tapping

in Motor Control
View More View Less
  • 1 Iowa State University
  • 2 American University
  • 3 University of Mary Hardin-Baylor
  • 4 The University of Tennessee, Knoxville
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

Auditory cues, including music, are commonly used in the treatment of persons with Parkinson’s disease. Yet, how music style and movement rate modulate movement performance in persons with Parkinson’s disease have been neglected and remain limited in healthy young populations. The purpose of this study was to determine how music style and movement rate influence movement performance in healthy young adults. Healthy participants were asked to perform repetitive finger movements at two pacing rates (70 and 140 beats per minute) for the following conditions: (a) a tone only, (b) activating music, and (c) relaxing music. Electromyography, movement kinematics, and variability were collected. Results revealed that the provision of music, regardless of style, reduced amplitude variability at both pacing rates. Intermovement interval was longer, and acceleration variability was reduced during both music conditions at the lower pacing rate only. These results may prove beneficial for designing therapeutic interventions for persons with Parkinson’s disease.

Stegemöller, Tatz, Warnecke, Hibbing, Bates, and Zaman are with the Dept. of Kinesiology, Iowa State University, Ames, IA. Tatz is also with the Dept. of Psychology, American University, Washington, DC. Warnecke is also with the Doctor of Physical Therapy Program, University of Mary Hardin-Baylor, Belton, TX. Hibbing is also with the Dept. of Kinesiology, Recreation, and Sports Studies, The University of Tennessee, Knoxville, Knoxville, TN.

Address author correspondence to Elizabeth L. Stegemöller at esteg@iastate.edu.
  • Ashoori, A., Eagleman, D.M., & Jankovic, J. (2015). Effects of auditory rhythm and music on gait disturbances in Parkinson’s disease. Frontiers in Neurology, 6, 234. PubMed doi:10.3389/fneur.2015.00234

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, J.A., Zatorre, R.J., & Penhune, V.B. (2014). Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. Journal of Cognitive Neuroscience, 26(4), 755767. PubMed doi:10.1162/jocn_a_00527

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Bruin, N., Doan, J.B., Turnbull, G., Suchowersky, O., Bonfield, S., Hu, B., & Brown, L.A. (2010). Walking with music is a safe and viable tool for gait training in Parkinson’s disease: The effect of a 13-week feasibility study on single and dual task walking. Parkinson’s Disease, 2010, 483530. PubMed doi:10.4061/2010/483530

    • Search Google Scholar
    • Export Citation
  • Foster, E.R., Golden, L., Duncan, R.P., & Earhart, G.M. (2013). Community-based Argentine tango dance program is associated with increased activity participation among individuals with Parkinson’s disease. Archives of Physical Medicine and Rehabilitation, 94(2), 240249. PubMed doi:10.1016/j.apmr.2012.07.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackney, M.E., & Earhart, G.M. (2009). Effects of dance on movement control in Parkinson’s disease: A comparison of Argentine tango and American ballroom. Journal of Rehabilitation Medicine, 41, 475481. PubMed doi:10.2340/16501977-0362

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackney, M.E., & Earhart, G.M. (2010). Effects of dance on gait and balance in Parkinson’s disease: A comparison of partnered and nonpartnered dance movement. Neurorehabilitation & Neural Repair, 24, 384392. doi:10.1177/1545968309353329

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, E.C., McNeely, M.E., & Earhart, G.M. (2017). The feasibility of singing to improve gait in Parkinson’s disease. Gait & Posture, 53, 224229. PubMed doi:10.1016/j.gaitpost.2017.02.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, B.K., Martens, P.A., & Janata, P. (2014). Spontaneous sensorimotor coupling with multipart music. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 16791696. PubMed

    • Search Google Scholar
    • Export Citation
  • Janata, P., Tomimc, S.T., & Haberman, J.M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology: General, 141(1), 5475. doi:10.1037/a0024208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jantzen, K.J., Steinberg, F.L., & Kelso, J.A. (2009). Coordination dynamics of large-scale neural circuitry underlying rhythmic sensorimotor behavior. Journal of Cognitive Neuroscience, 21(12), 24202433. PubMed doi:10.1162/jocn.2008.21182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leman, M., Moelants, D., Varewyck, M., Styns, F., van Noorden, L., & Martens, J.P. (2013). Activating and relaxing music entrains the speed of beat synchronized walking. PLoS ONE, 8(7), 67932. doi:10.1371/journal.pone.0067932

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madison, G. (2006). Experiencing groove induced by music: Consistency and phenomenology. Music Perception, 24, 201208. doi:10.1525/mp.2006.24.2.201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madison, G., Gouton, F., Ullén, F., & Hörnström, K. (2011). Modeling the tendency for music to induce movement in humans: First correlations with low-level audio descriptor across music genres. Journal of Experimental Psychology: Human Perception and Performance, 37, 15781594. PubMed

    • Search Google Scholar
    • Export Citation
  • Mayville, J.M., Jantzen, K.J., Fuchs, A., Steinberg, F.L., & Kelson, J.A.S. (2002). Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Human Brain Mapping, 17(4), 214229. PubMed doi:10.1002/hbm.10065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantelyat, A., Syres, C., Reichwein, S., & Willis, A. (2016). DRUM-PD: The use of a drum circle to improve the symptoms and signs of Parkinson’s disease (PD). Movement Disorders Clinical Practice, 3(3), 243249. PubMed doi:10.1002/mdc3.12269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Repp, B.H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969992. doi:10.3758/BF03206433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegemöller, E.L., Allen, D.P., Simuni, T., & MacKinnon, C.D. (2010). Rate-dependent impairments in repetitive finger movements in patients with Parkinson’s disease are not due to peripheral fatigue. Neuroscience Letters, 482(1), 16. doi:10.1016/j.neulet.2010.06.054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegemöller, E.L., Allen, D.P., Simuni, T., & MacKinnon, C.D. (2016). Motor cortical oscillations are abnormally suppressed during repetitive movement in patients with Parkinson’s disease. Clinical Neurophysiology, 127(1), 664674. doi:10.1016/j.clinph.2015.05.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegemöller, E.L., Allen, D.P., Simuni, T., & MacKinnon, C.D. (2017). Altered premotor cortical oscillations firing repetitive movement in persons with Parkinson’s disease. Behavioural Brain Research, 317, 141146. doi:10.1016/j.bbr.2016.09.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegemöller, E.L., Simuni, T., & MacKinnon, C.D. (2009). Timing and frequency barriers during repetitive finger movements in patients with Parkinson’s disease. Movement Disorders, 24, 11621169. doi:10.1002/mds.22535

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stupacher, J., Hove, M.J., Novembre, G., Schütz-Bosbach, S., & Keller, P.E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82(2), 127136. PubMed doi:10.1016/j.bandc.2013.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toma, K., Mima, T., Matsuoka, T., Gerloff, C., Ohnishi, T., Koshy, B., … Hallett, M. (2002). Movement rate effect on activation and functional coupling of motor cortical areas. Journal of Neurophysiology, 88, 33773385. PubMed doi:10.1152/jn.00281.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vercruysse, S., Spildoored, J., Heremans, E., Vandenbossche, J., Levin, O., Wenderoth, N., … Nieuwboer, A. (2012). Freezing in Parkinson’s disease: A spatiotemporal motor disorder beyond gait. Movement Disorders, 27(2), 254263. PubMed doi:10.1002/mds.24015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vercruysse, S., Spildoored, J., Heremans, E., Vandenbossche, J., Wenderoth, N., Swinnen, S.P., … Nieuwboer, A. (2012). Abnormalities and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing gait. Neurorehabilitation & Neural Repair, 26(6), 636645. PubMed doi:10.1177/1545968311431964

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witek, M.A.G., Clarke, E.F., Wallentin, M., Kringelbach, M.L., & Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. PLoS ONE, 9(4), e94446. doi:10.1371/journal.pone.0094446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatorre, R.J., Chen, J.L., & Penhune, V.B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547558. PubMed doi:10.1038/nrn2152

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 231 167 21
Full Text Views 10 7 3
PDF Downloads 4 4 1